Skip to main content
Log in

Superradiant emission from self-assembled light emitters: From molecules to quantum dots

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Colloidal synthesis methods and ultrahigh-vacuum molecular beam epitaxy can tailor semiconductor-based nanoscale single emitters—quantum dots—as the building blocks for classical optoelectronic devices, such as lasers, light-emitting devices, and display technologies. These novel light sources have a basic resemblance of luminescent organic molecules, individually and in the aggregated forms. Highly ordered superstructures of quantum dots, obtained via scalable bottom-up self-assembly, exhibit diverse collective phenomena, such as band-like charge transport or superradiant emission. Superradiance emerges from coherent coupling of several emitters via a common radiation field resulting in a single giant dipole leading to short (sub-nanosecond) and intense (proportional to the squared number of coupled emitters) bursts of light. In this article, we review the basic principles and progress in the development of superradiant emitters with organic molecules and inorganic quantum dots, in view of their integration into classical and novel quantum light sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. The Nobel Prize in Physics 2000, https://www.nobelprize.org/prizes/physics/2000/summary.

  2. The Nobel Prize in Physics 2014, https://www.nobelprize.org/prizes/physics/2014/summary/.

  3. MRS Bull. 23 (2), (1998).

    Google Scholar 

  4. A.I. Ekimov, A.A. Onushchenko, Sov. Phys. Semicond. 16, 775 (1982).

    Google Scholar 

  5. A.L. Efros, A.L. Efros, Sov. Phys. Semicond. 16, 772 (1982).

    Google Scholar 

  6. MRS Bull. 38 (9), (2013).

  7. C. Adachi, M.A. Baldo, M.E. Thompson, S.R. Forrest, J. Appl. Phys. 90, 5048 (2001).

    Article  CAS  Google Scholar 

  8. M. Segal, M. Singh, K. Rivoire, S. Difley, T. Van Voorhis, M.A. Baldo, Nat. Mater. 6, 374 (2007).

    Article  CAS  Google Scholar 

  9. Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Nat. Photonics 8, 326 (2014).

    Article  CAS  Google Scholar 

  10. Q. Wei, N. Fei, A. Islam, T. Lei, L. Hong, R. Peng, X. Fan, L. Chen, P. Gao, Z. Ge, Adv. Opt. Mater. 6, 1800512 (2018).

    Article  CAS  Google Scholar 

  11. Y. Zou, S. Gong, G. Xie, C. Yang, Adv. Opt. Mater. 6, 1800568 (2018).

    Article  CAS  Google Scholar 

  12. F. Guo, A. Karl, Q.-F. Xue, K.C. Tam, K. Forberich, C.J. Brabec, Light Sci. Appl. 6, e17094 (2017).

    Article  CAS  Google Scholar 

  13. X.-L. Chu, S. Götzinger, V. Sandoghdar, Nat. Photonics 11, 58 (2017).

    Article  CAS  Google Scholar 

  14. P. Senellart, G. Solomon, A. White, Nat. Nanotechnol. 12, 1026 (2017).

    Article  CAS  Google Scholar 

  15. P. Siyushev, G. Stein, J. Wrachtrup, I. Gerhardt, Nature 509, 66 (2014).

    Article  CAS  Google Scholar 

  16. T.A. Welton, Phys. Rev. 74, 1157 (1948).

    Article  CAS  Google Scholar 

  17. A.V. Kuhlmann, J.H. Prechtel, J. Houel, A. Ludwig, D. Reuter, A.D. Wieck, R.J. Warburton, Nat. Commun. 6, 8204 (2015).

    Article  Google Scholar 

  18. D. Dufaker, L.O. Mereni, K.F. Karlsson, V. Dimastrodonato, G. Juska, P.O. Holtz, E. Pelucchi, Appl. Phys. Lett. 98, 251911 (2011).

    Article  CAS  Google Scholar 

  19. O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong, D.K. Harris, H. Wei, H.-S. Han, D. Fukumura, R.K. Jain, M.G. Bawendi, Nat. Mater. 12, 445 (2013).

    Article  CAS  Google Scholar 

  20. H. Utzat, K.E. Shulenberger, O.B. Achorn, M. Nasilowski, T.S. Sinclair, M.G. Bawendi, Nano Lett. 17, 6838 (2017).

    Article  CAS  Google Scholar 

  21. M.R. Salvador, M.W. Graham, G.D. Scholes, J. Chem. Phys. 125, 184709 (2006).

    Article  CAS  Google Scholar 

  22. K. Cong, Q. Zhang, Y. Wang, G. Timothy Noe II, A. Belyanin, J. Kono, J. Opt. Soc. Am. B 33, 80 (2016).

    Article  Google Scholar 

  23. R.H. Dicke, Phy. Rev. 93, 99 (1954).

    Article  CAS  Google Scholar 

  24. F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H.A.M. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, S. Höfling, Nat. Commun. 7, 11540 (2016).

    Article  CAS  Google Scholar 

  25. N. Skribanowitz, I.P. Herman, J.C. MacGillivray, M.S. Feld, Phys. Rev. Lett. 30, 309 (1973).

    Article  Google Scholar 

  26. K. Miyajima, Y. Kagotani, S. Saito, M. Ashida, T. Itoh, J. Phys. Condens. Matter 21, 195802 (2009).

    Article  CAS  Google Scholar 

  27. M.S. Malcuit, J.J. Maki, D.J. Simkin, W.R. Boyd, Phys. Rev. Lett. 59, 1189 (1987).

    Article  CAS  Google Scholar 

  28. G. Timothy Noe II, J.-H. Kim, J. Lee, Y. Wang, A.K. Wójcik, S.A. McGill, D.H. Reitze, A.A. Belyanin, J. Kono, Nat. Phys. 8, 219 (2012).

    Article  CAS  Google Scholar 

  29. F. Würthner, T.E. Kaiser, C.R. Saha-Möller, Angew. Chem. Int. Ed. 50, 3376 (2011).

    Article  CAS  Google Scholar 

  30. M. Kasha, Radiat. Res. 20, 55 (1963).

    Article  CAS  Google Scholar 

  31. N.J. Hestand, F.C. Spano, Acc. Chem. Res. 50, 341 (2017).

    Article  CAS  Google Scholar 

  32. J. Moll, S. Daehne, J.R. Durrant, D.A. Wiersma, J. Chem. Phys. 102, 6362 (1995).

    Article  CAS  Google Scholar 

  33. T. Stangl, P. Wilhelm, K. Remmerssen, S. Höger, J. Vogelsang, J.M. Lupton, Proc. Natl. Acad. Sci. U.S.A. 112, E5560 (2015).

    Article  CAS  Google Scholar 

  34. C. Hettich, C. Schmitt, J. Zitzmann, S. Kühn, I. Gerhardt, V. Sandoghdar, Science 298, 385 (2002).

    Article  CAS  Google Scholar 

  35. T. Heindel, A. Thoma, M. von Helversen, M. Schmidt, A. Schlehahn, M. Gschrey, P. Schnauber, J.H. Schulze, A. Strittmatter, J. Beyer, S. Rodt, A. Carmele, A. Knorr, S. Reitzenstein, Nat. Commun. 8, 14870 (2017).

    Article  CAS  Google Scholar 

  36. J.-H. Kim, S. Aghaeimeibodi, C.J.K. Richardson, R.P. Leavitt, E. Waks, Nano Lett. 18, 4734 (2018).

    Article  CAS  Google Scholar 

  37. J.Q. Grim, A.S. Bracker, M. Zalalutdinov, S.G. Carter, A.C. Kozen, M. Kim, C.S. Kim, J.T. Mlack, M. Yakes, B. Lee, D. Gammon, Nat. Mater. 18, 963 (2019).

    Article  CAS  Google Scholar 

  38. L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko, Nano Lett. 15, 3692 (2015).

    Article  CAS  Google Scholar 

  39. J. Shamsi, A.S. Urban, M. Imran, L. De Trizio, L. Manna, Chem. Rev. 119, 3296 (2019).

    Article  CAS  Google Scholar 

  40. Q.A. Akkerman, G. Rainò, M.V. Kovalenko, L. Manna, Nat. Mater. 17, 394 (2018).

    Article  CAS  Google Scholar 

  41. Y. Li, T. Ding, X. Luo, Z. Chen, X. Liu, X. Lu, K. Wu, Nano Res. 12, 619 (2019).

    Article  CAS  Google Scholar 

  42. R.E. Brandt, V. Stevanović, D.S. Ginley, T. Buonassisi, MRS Commun. 5, 265 (2015).

    Article  CAS  Google Scholar 

  43. M. Fu, P. Tamarat, H. Huang, J. Even, A.L. Rogach, B. Lounis, Nano Lett. 17, 2895 (2017).

    Article  CAS  Google Scholar 

  44. G. Rainò, G. Nedelcu, L. Protesescu, M.I. Bodnarchuk, M.V. Kovalenko, R.F. Mahrt, T. Stöferle, ACS Nano 10, 2485 (2016).

    Article  CAS  Google Scholar 

  45. M.A. Becker, R. Vaxenburg, G. Nedelcu, P.C. Sercel, A. Shabaev, M.J. Mehl, J.G. Michopoulos, S.G. Lambrakos, N. Bernstein, J.L. Lyons, T. Stöferle, R.F. Mahrt, M.V. Kovalenko, D.J. Norris, G. Rainò, A.L. Efros, Nature 553, 189 (2018).

    Article  CAS  Google Scholar 

  46. H. Utzat, W. Sun, A.E.K. Kaplan, F. Krieg, M. Ginterseder, B. Spokoyny, N.D. Klein, K.E. Shulenberger, C.F. Perkinson, M.V. Kovalenko, M.G. Bawendi, Science 363, 1068 (2019).

    Article  CAS  Google Scholar 

  47. G. Rainò, M.A. Becker, M.I. Bodnarchuk, R.F. Mahrt, M.V. Kovalenko, T. Stöferle, Nature 563, 671 (2018).

    Article  CAS  Google Scholar 

  48. C. Bradac, M.T. Johnsson, M.v. Breugel, B.Q. Baragiola, R. Martin, M.L. Juan, G.K. Brennen, T. Volz, Nat. Commun. 8, 1205 (2017).

    Article  CAS  Google Scholar 

  49. MRS Bull. 38 (2), (2013).

  50. W.E. Moerner, Angew. Chem. Int. Ed. 54, 8067 (2015).

    Article  CAS  Google Scholar 

  51. C.S. Muñoz, E. del Valle, A.G. Tudela, K. Müller, S. Lichtmannecker, M. Kaniber, C. Tejedor, J.J. Finley, F.P. Laussy, Nat. Photonics 8, 550 (2014).

    Article  CAS  Google Scholar 

  52. A. Aspuru-Guzik, P. Walther, Nat. Phys. 8, 285 (2012).

    Article  CAS  Google Scholar 

  53. J. Huh, G.G. Guerreschi, B. Peropadre, J.R. McClean, A. Aspuru-Guzik, Nat. Photonics 9, 615 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

H.U. was funded by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (Award No. DE-FG02-07ER46454). M.V.K. and G.R. acknowledge financial support from the European Union through Horizon 2020 (ERC Consolidator Grant SCALE-HALO, Grant Agreement No. 819740).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rainò.

Supplementary Materials

Supplementary Materials

Gabriele Rainò has been a senior research fellow at ETH Zürich, Switzerland, since 2017. He received his PhD degree in innovative materials and technologies from the University of Salento, Italy, in 2008. In 2008, he joined IBM Research-Zürich, Switzerland, as a postdoctoral researcher, studying organic–inorganic nanomaterials for integrated photonics. In 2011, Rainò became a junior researcher at IBM Research-Zürich and began the exploration of colloidal nanomaterials as nonclassical light sources. His current research focuses on continuing the exploration of colloidal nanomaterials for optoelectronics and quantum applications. He has co-authored more than 45 publications in peer-reviewed journals and holds three patents. Rainò can be reached by email at rainog@ethz.ch.

Hendrik Utzat is a postdoctoral fellow at Stanford University. He studied chemistry at RWTH Aachen University, Germany, and ETH Zürich, Switzerland, and received his PhD degree in physical chemistry from the Massachusetts Institute of Technology in 2019. His current research focuses on solid-state emitters for quantum photonics and strong light–matter coupling. He has published more than 15 peer-reviewed publications in the areas of semiconducting polymers, solid-state quantum emitters, microfluidics, and spectroscopy. Utzat can be reached by email at hutzat@stanford.edu.

Moungi G. Bawendi is the Lester Wolfe Professor of Chemistry at the Massachusetts Institute of Technology. He received his AB degree from Harvard University in 1982, and his PhD degree in chemistry from the University of Chicago in 1988. He conducted postdoctoral research at Bell Laboratories. His research focuses on the technology of nanomaterials, including applications in light emission, energy harvesting, and biological imaging. Bawendi has published more than 500 scientific publications and holds more than 50 US patents. He is a Fellow of the American Association for the Advancement of Science and the American Academy of Arts & Sciences, and is a member of the National Academy of Sciences. Bawendi can be reached by email at mgb@mit.edu.

Maksym V. Kovalenko is a professor at ETH Zürich, Switzerland. He received his PhD degree in nanoscience and nanotechnology from Johannes Kepler University Linz, Austria, in 2007. He then joined the University of Chicago as a postdoctoral fellow, studying the surface chemistry and self-assembly of colloidal nanocrystals. In 2011, Kovalenko joined ETH Zürich and Empa as a tenure-track assistant professor, an associate professor in 2017, and a full professor in 2020. His research interests include chemistry, physics, and applications of functional inorganic materials, including colloidal quantum dots, novel solid-state compounds, and materials for electrochemical energy storage. He has co-authored 250 publications and holds 11 patent applications. Kovalenko can be reached by email at mvkovalenko@ethz.ch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rainò, G., Utzat, H., Bawendi, M. et al. Superradiant emission from self-assembled light emitters: From molecules to quantum dots. MRS Bulletin 45, 841–848 (2020). https://doi.org/10.1557/mrs.2020.250

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.250

Navigation