Skip to main content
Log in

Self-assembly of bioinspired and biologically functional materials

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Self-assembly enables hierarchical organization and compartmentalization of matter previously observed only in natural materials. Simple chemical motifs can be used to fabricate structures with diverse range of architectures and properties. The design principles, originally found in nature, are being implemented in self-assembled materials. The examples include high mechanical strength of bones and nacre achieved through hierarchical organic–inorganic organization, and DNA nanotechnology enabled by complementary bonding of DNA molecules. Building materials with controlled architectures from the nanoscale to the macroscale will lead to a combination of properties that will have significant impacts on fields ranging from tissue regeneration to optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. T. Aida, E. Meijer, S. Stupp, Science 335, 813 (2012).

    Article  CAS  Google Scholar 

  2. B.A. Krajina, A.C. Proctor, A.P. Schoen, A.J. Spakowitz, S.C. Heilshorn, Prog. Mater. Sci. 91, 1 (2018).

    Article  CAS  Google Scholar 

  3. P.A. Gabrys, L.Z. Zornberg, R.J. Macfarlane, Small 15, 1805424 (2019).

    Article  CAS  Google Scholar 

  4. M.J. Webber, E.A. Appel, E. Meijer, R. Langer, Nat. Mater. 15, 13 (2016).

    Article  CAS  Google Scholar 

  5. J.K. Sahoo, M.A. VandenBerg, M.J. Webber, Adv. Drug Deliv. Rev. 127, 185 (2018).

    Article  CAS  Google Scholar 

  6. T. Svitkina, Cold Spring Harb. Perspect. Biol. 10, a018267 (2018).

    Article  CAS  Google Scholar 

  7. G. Nardone, J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skládal, M. Pešl, G. Caluori, S. Pagliari, F. Martino, Nat. Commun. 8, 1 (2017).

    Article  CAS  Google Scholar 

  8. Y. Bai, Q. Luo, J. Liu, Chem. Soc. Rev. 45, 2756 (2016).

    Article  CAS  Google Scholar 

  9. H.D. Espinosa, J.E. Rim, F. Barthelat, M.J. Buehler, Prog. Mater. Sci. 54, 1059 (2009).

    CAS  Google Scholar 

  10. J.W. Dunlop, P. Fratzl, Annu. Rev. Mater. Res. 40, 1 (2010).

    Article  CAS  Google Scholar 

  11. N. Reznikov, M. Bilton, L. Lari, M.M. Stevens, R. Kröger, Science 360, eaa02189 (2018).

    Article  CAS  Google Scholar 

  12. A. Lakshmanan, S. Zhang, C.A. Hauser, Trends Biotechnol. 30, 155 (2012).

    Article  CAS  Google Scholar 

  13. S. Zhang, M.A. Greenfield, A. Mata, L.C. Palmer, R. Bitton, J.R. Mantei, C. Aparicio, M.O. De La Cruz, S.I. Stupp, Nat. Mater. 9, 594 (2010).

    Article  CAS  Google Scholar 

  14. S.H. Kang, M.D. Dickey, MRS Bull. 41, 93 (2016).

    Article  Google Scholar 

  15. N.C. Seeman, J. Theor. Biol. 99, 237 (1982).

    Article  CAS  Google Scholar 

  16. J. Chen, N.C. Seeman, Nature 350, 631 (1991).

    Article  CAS  Google Scholar 

  17. E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman, Nature 394, 539 (1998).

    Article  CAS  Google Scholar 

  18. B. Ding, N.C. Seeman, Science 314, 1583 (2006).

    Article  CAS  Google Scholar 

  19. J. Zheng, J.J. Birktoft, Y. Chen, T. Wang, R. Sha, P.E. Constantinou, S.L. Ginell, C. Mao, N.C. Seeman, Nature 461, 74 (2009).

    Article  CAS  Google Scholar 

  20. P.W. Rothemund, Nature 440, 297 (2006).

    Article  CAS  Google Scholar 

  21. N.C. Seeman, Structural DNA Nanotechnology (Cambridge University Press, Cambridge, UK, 2015).

    Book  Google Scholar 

  22. A.M. Watkins, P.S. Arora, ACS Chem. Biol. 9, 1747 (2014).

    Article  CAS  Google Scholar 

  23. D. Burdick, B. Soreghan, M. Kwon, J. Kosmoski, M. Knauer, A. Henschen, J. Yates, C. Cotman, C. Glabe, J. Biol. Chem. 267, 546 (1992).

    Article  CAS  Google Scholar 

  24. M.C. Good, J.G. Zalatan, W.A. Lim, Science 332, 680 (2011).

    Article  CAS  Google Scholar 

  25. K. Simons, J.L. Sampaio, Cold Spring Harb. Perspect. Biol. 3, a004697 (2011).

    Article  CAS  Google Scholar 

  26. Y. Shin, C.P. Brangwynne, Science 357 (2017), https://science.sciencemag.org/content/357/6357/eaaf4382.full.pdf.

  27. M. Vicente-Manzanares, C.K. Choi, A.R. Horwitz, J. Cell Sci. 122, 199 (2009).

    Article  CAS  Google Scholar 

  28. M.P. Wenger, L. Bozec, M.A. Horton, P. Mesquida, Biophys. J. 93, 1255 (2007).

    Article  CAS  Google Scholar 

  29. J. Gosline, P. Guerette, C. Ortlepp, K. Savage, J. Exp. Biol. 202, 3295 (1999).

    CAS  Google Scholar 

  30. S. Keten, Z. Xu, B. Ihle, M.J. Buehler, Nat. Mater. 9, 359 (2010).

    Article  CAS  Google Scholar 

  31. T. Giesa, C.C. Perry, M.J. Buehler, Biomacromolecules 17, 427 (2016).

    Article  CAS  Google Scholar 

  32. C. Hellmich, D. Katti, MRS Bull. 40, 309 (2015).

    Article  Google Scholar 

  33. C.D. Spicer, E.T. Pashuck, M.M. Stevens, Chem. Rev. 118, 7702 (2018).

    Article  CAS  Google Scholar 

  34. Y.-B. Jiang, Z. Sun, MRS Bull. 44, 167 (2019).

    Article  CAS  Google Scholar 

  35. M. Erdelyi, A. Gogoll, Synthesis 2002, 1592 (2002).

    Google Scholar 

  36. B.A. Williams, C.W. Diehnelt, P. Belcher, M. Greving, N.W. Woodbury, S.A. Johnston, J.C. Chaput, J. Am. Chem. Soc. 131, 17233 (2009).

    Article  CAS  Google Scholar 

  37. E.T. Pashuck, B.J. Duchet, C.S. Hansel, S.A. Maynard, L.W. Chow, M.M. Stevens, ACS Nano 10, 11096 (2016).

    Article  CAS  Google Scholar 

  38. V. Singh, K. Snigdha, C. Singh, N. Sinha, A.K. Thakur, Soft Matter 11, 5353 (2015).

    Article  CAS  Google Scholar 

  39. L. Sun, C. Zheng, T.J. Webster, Int. J. Nanomed. 12, 73 (2017).

    Article  CAS  Google Scholar 

  40. P.Y. Chou, G.D. Fasman, Biochemistry 13, 222 (1974).

    Article  CAS  Google Scholar 

  41. H. Yokoi, T. Kinoshita, S. Zhang, Proc. Natl. Acad. Sci. U.S.A. 102, 8414 (2005).

    Article  CAS  Google Scholar 

  42. J.D. Hartgerink, E. Beniash, S.I. Stupp, Science 294, 1684 (2001).

    Article  CAS  Google Scholar 

  43. S.E. Paramonov, H.-W. Jun, J.D. Hartgerink, J. Am. Chem. Soc. 128, 7291 (2006).

    Article  CAS  Google Scholar 

  44. E.T. Pashuck, H. Cui, S.I. Stupp, J. Am. Chem. Soc. 132, 6041 (2010).

    Article  CAS  Google Scholar 

  45. Q.T. Nguyen, Y. Hwang, A.C. Chen, S. Varghese, R.L. Sah, Biomaterials 33, 6682 (2012).

    Article  CAS  Google Scholar 

  46. J.W.E. Chen, S. Pedron, B.A. Harley, Macromol. Biosci. 17, 1700018 (2017).

    Article  CAS  Google Scholar 

  47. C. Yan, D.J. Pochan, Chem. Soc. Rev. 39, 3528 (2010).

    Article  CAS  Google Scholar 

  48. F. Koch, M. Müller, F. König, N. Meyer, J. Gattlen, U. Pieles, K. Peters, B. Kreikemeyer, S. Mathes, S. Saxer, R. Soc. Open Sci. 5, 171562 (2018).

    Article  CAS  Google Scholar 

  49. J. Notbohm, A. Lesman, D.A. Tirrell, Integr. Biol. 7, 1186 (2015).

    Article  CAS  Google Scholar 

  50. J.-Y. Sun, X. Zhao, W.R. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, Z. Suo, Nature 489, 133 (2012).

    Article  CAS  Google Scholar 

  51. D.E. Clarke, E.T. Pashuck, S. Bertazzo, J.V. Weaver, M.M. Stevens, J. Am. Chem. Soc. 139, 7250 (2017).

    Article  CAS  Google Scholar 

  52. D.L. Taylor, M. Inhet Panhuis, Adv. Mater. 28, 9060 (2016).

    Article  CAS  Google Scholar 

  53. L. Haines-Butterick, K. Rajagopal, M. Branco, D. Salick, R. Rughani, M. Pilarz, M.S. Lamm, D.J. Pochan, J.P. Schneider, Proc. Natl. Acad. Sci. U.S.A. 104, 7791 (2007).

    Article  CAS  Google Scholar 

  54. B.A. Aguado, W. Mulyasasmita, J. Su, K.J. Lampe, S.C. Heilshorn, Tissue Eng. Part A 18, 806 (2012).

    Article  CAS  Google Scholar 

  55. D.N. Woolfson, Pept. Sci. 94, 118 (2010).

    Article  CAS  Google Scholar 

  56. J.M. Fletcher, Science 340, 595 (2013).

    Article  CAS  Google Scholar 

  57. G.X. Gu, I. Su, S. Sharma, J.L. Voros, Z. Qin, M.J. Buehler, J. Biomech. Eng. 138 (2016).

  58. G.A. Hudalla, T. Sun, J.Z. Gasiorowski, H. Han, Y.F. Tian, A.S. Chong, J.H. Collier, Nat. Mater. 13, 829 (2014).

    Article  CAS  Google Scholar 

  59. R. Freeman, M. Han, Z. Álvarez, J.A. Lewis, J.R. Wester, N. Stephanopoulos, M.T. McClendon, C. Lynsky, J.M. Godbe, H. Sangji, Science 362, 808 (2018).

    Article  CAS  Google Scholar 

  60. Z. Dong, Y. Wang, Y. Yin, J. Liu, Curr. Opin. Colloid Interface Sci. 16, 451 (2011).

    Article  CAS  Google Scholar 

  61. N.A. Sommerdijk, H. Cölfen, MRS Bull. 35, 116 (2010).

    Article  Google Scholar 

  62. A.E. Rawlings, J.P. Bramble, S.S. Staniland, Soft Matter 8, 6675 (2012).

    Article  CAS  Google Scholar 

  63. M.A. Boles, M. Engel, D.V. Talapin, Chem. Rev. 116, 11220 (2016).

    Article  CAS  Google Scholar 

  64. A.-C. Genix, J. Oberdisse, Soft Matter 14, 5161 (2018).

    Article  CAS  Google Scholar 

  65. E.S. Goerlitzer, R.N. Klupp Taylor, N. Vogel, Adv. Mater. 30, 1706654 (2018).

    Article  CAS  Google Scholar 

  66. R.J. Macfarlane, B. Lee, M.R. Jones, N. Harris, G.C. Schatz, C.A. Mirkin, Science 334, 204 (2011).

    Article  CAS  Google Scholar 

  67. R.J. Macfarlane, M.R. Jones, B. Lee, E. Auyeung, C.A. Mirkin, Science 341, 1222 (2013).

    Article  CAS  Google Scholar 

  68. E. Auyeung, T.I. Li, A.J. Senesi, A.L. Schmucker, B.C. Pals, M.O. de La Cruz, C.A. Mirkin, Nature 505, 73 (2014).

    Article  CAS  Google Scholar 

  69. D.J. Lewis, L.Z. Zornberg, D.J. Carter, R.J. Macfarlane, Nat. Mater. 19, 719 (2020).

    Article  CAS  Google Scholar 

  70. J.D. Le, Y. Pinto, N.C. Seeman, K. Musier-Forsyth, T.A. Taton, R.A. Kiehl, Nano Lett. 4, 2343 (2004).

    Article  CAS  Google Scholar 

  71. W. Liu, M. Tagawa, H.L. Xin, T. Wang, H. Emamy, H. Li, K.G. Yager, F.W. Starr, A.V. Tkachenko, O. Gang, Science 351, 582 (2016).

    Article  CAS  Google Scholar 

  72. Y. Tian, Y. Zhang, T. Wang, H.L. Xin, H. Li, O. Gang, Nat. Mater. 15, 654 (2016).

    Article  CAS  Google Scholar 

  73. C.L. Chen, N.L. Rosi, Angew. Chem. Int. Ed. 49, 1924 (2010).

    Article  CAS  Google Scholar 

  74. M.R. Jones, K.D. Osberg, R.J. Macfarlane, M.R. Langille, C.A. Mirkin, Chem. Rev. 111, 3736 (2011).

    Article  CAS  Google Scholar 

  75. T.R. Walsh, M.R. Knecht, Chem. Rev. 117, 12641 (2017).

    Article  CAS  Google Scholar 

  76. A.A. Shemetov, I. Nabiev, A. Sukhanova, ACS Nano 6, 4585 (2012).

    Article  CAS  Google Scholar 

  77. R. Mout, G. Yesilbag Tonga, L.-S. Wang, M. Ray, T. Roy, V.M. Rotello, ACS Nano 11, 3456 (2017).

    Article  CAS  Google Scholar 

  78. M.A. Kostiainen, P. Hiekkataipale, A. Laiho, V. Lemieux, J. Seitsonen, J. Ruokolainen, P. Ceci, Nat. Nanotechnol. 8, 52 (2013).

    Article  CAS  Google Scholar 

  79. E. Auyeung, R.J. Macfarlane, C.H.J. Choi, J.I. Cutler, C.A. Mirkin, Adv. Mater. 24, 5181 (2012).

    Article  CAS  Google Scholar 

  80. J. Zhang, P.J. Santos, P.A. Gabrys, S. Lee, C. Liu, R.J. Macfarlane, J. Am. Chem. Soc. 138, 16228 (2016).

    Article  CAS  Google Scholar 

  81. P.J. Santos, Z. Cao, J. Zhang, A. Alexander-Katz, R.J. Macfarlane, J. Am. Chem. Soc. 141, 14624 (2019).

    Article  CAS  Google Scholar 

  82. Y. Wang, P.J. Santos, J.M. Kubiak, X. Guo, M.S. Lee, R.J. Macfarlane, J. Am. Chem. Soc. 141, 13234 (2019).

    Article  CAS  Google Scholar 

  83. A. Abdilla, N.D. Dolinski, P. de Roos, J.M. Ren, E. van der Woude, S.E. Seo, M.S. Zayas, J. Lawrence, J. Read de Alaniz, C.J. Hawker, J. Am. Chem. Soc. 142, 1667 (2020).

    Article  CAS  Google Scholar 

  84. J. Wang, Q. Cheng, Z. Tang, Chem. Soc. Rev. 41, 1111 (2012).

    Article  Google Scholar 

  85. X. Zhou, B. Guo, L. Zhang, G.-H. Hu, Chem. Soc. Rev. 46, 6301 (2017).

    Article  CAS  Google Scholar 

  86. K. Watanabe, E. Miwa, F. Asai, T. Seki, K. Urayama, T. Nakatani, S. Fujinami, T. Hoshino, M. Takata, C. Liu, ACS Mater. Lett. 2, 325 (2020).

    Article  CAS  Google Scholar 

  87. P. Ball, Sci. Am. 306, 74 (2012).

    Article  Google Scholar 

  88. J. Lv, D. Ding, X. Yang, K. Hou, X. Miao, D. Wang, B. Kou, L. Huang, Z. Tang, Angew. Chem. Int. Ed. 131, 7865 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Thomas Pashuck.

Supplementary Materials

Supplementary Materials

E. Thomas Pashuck is an assistant professor in bioengineering at Lehigh University. He received his PhD degree in materials science and engineering from Northwestern University. He completed postdoctoral research as a Marie Curie International Incoming Fellow at Imperial College London, UK. His research includes designing new biomaterials for regenerative medicine. His research focuses on developing cell-responsive hydrogels and noncovalently cross-linked polymers with tunable viscoelastic properties. Pashuck can be reached by email at etp218@lehigh.edu.

Ned Seeman is a Margaret and Herman Sokol Professor of Chemistry at New York University. He receievd his BS degree in biochemistry from the University of Chicago, and his PhD degree in biological crystallography from the University of Pittsburgh in 1970. He completed postdoctoral research at Columbia University and the Massachusetts Institute of Technology. His research focuses on nucleic acid crystallography. Seeman is most noted for his development of the concept of DNA nanotechnology. His awards include the Feynman Prize in Nanotechnology in 1995, and The Kavli Prize in Nanoscience. He is a Fellow of The Norwegian Academy of Science and Letters. Seeman can be reached by email at ned.seeman@nyu.edu.

Robert Macfarlane is the Paul M. Cook Associate Professor of Materials Science at the Massachusetts Institute of Technology. He obtained his PhD degree in chemistry from Northwestern University in 2013. He was a Kavli Postdoctoral Fellow at the California Institute of Technology. His research focuses on developing new assembly methods to manipulate material structure across multiple length scales simultaneously, using a combination of different building blocks, including inorganic nanoparticles, DNA, synthetic polymers, and supramolecular chemistry. Macfarlane can be reached by email at rmacfarl@mit.edu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashuck, E.T., Seeman, N. & Macfarlane, R. Self-assembly of bioinspired and biologically functional materials. MRS Bulletin 45, 832–840 (2020). https://doi.org/10.1557/mrs.2020.249

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.249

Navigation