Skip to main content

Self-assembly for electronics

Abstract

Self-assembly, a process in which molecules, polymers, and particles are driven by local interactions to organize into patterns and functional structures, is being exploited in advancing silicon electronics and in emerging, unconventional electronics. Silicon electronics has relied on lithographic patterning of polymer resists at progressively smaller lengths to scale down device dimensions. Yet, this has become increasingly difficult and costly. Assembly of block copolymers and colloidal nanoparticles allows resolution enhancement and the definition of essential shapes to pattern circuits and memory devices. As we look to a future in which electronics are integrated at large numbers and in new forms for the Internet of Things and wearable and implantable technologies, we also explore a broader material set. Semiconductor nanoparticles and biomolecules are prized for their size-, shape-, and composition-dependent properties and for their solution-based assembly and integration into devices that are enabling unconventional manufacturing and new device functions.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    F.S. Bates, G.H. Fredrickson, Phys. Today 52, 32 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    J.G. Son, K.W. Gotrik, C.A. Ross, ACS Macro Lett. 1, 1279 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    C.-C. Liu, E. Han, M.S. Onses, C.J. Thode, S. Ji, P. Gopalan, P.F. Nealey, Macromolecules 44, 1876 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    J.Y. Cheng, C.T. Rettner, D.P. Sanders, H.-C. Kim, W.D. Hinsberg, Adv. Mater. 20, 3155 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    R. Ruiz, H. Kang, F.A. Detcheverry, E. Dobisz, D.S. Kercher, T.R. Albrecht, J.J. de Pablo, P.F. Nealey, Science (80). 321, 936 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    L. Wan, X. Yang, Langmuir 25, 12408 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    G. Claveau, P. Quemere, M. Argoud, J. Hazart, P.P. Barros, A. Sarrazin, N. Posseme, R. Tiron, X. Chevalier, C. Nicolet, C. Navarro, J. Micro Nanolithogr. MEMS MOEMS. 15, 031604 (2016).

    Article  Google Scholar 

  8. 8.

    J. Doise, J. Bekaert, B.T. Chan, R. Gronheid, Y. Cao, S. Hong, G. Lin, D. Fishman, Y. Chakk, T. Marzook, J. Vac. Sci. Technol. B 33, 06F301 (2015).

    Article  CAS  Google Scholar 

  9. 9.

    X.-Y. Bao, H. Yi, C. Bencher, L.-W. Chang, H. Dai, Y. Chen, P.-T.J. Chen, H.-S.P. Wong, 2011 International Electron Devices Meeting (IEEE, Washington, DC, 2011), http://ieeexplore.ieee.org/document/6131510/), pp. 7.7.1–7.7.4.

  10. 10.

    H. Tsai, J.W. Pitera, H. Miyazoe, S. Bangsaruntip, S.U. Engelmann, C.-C. Liu, J.Y. Cheng, J.J. Bucchignano, D.P. Klaus, E.A. Joseph, D.P. Sanders, M.E. Colburn, M.A. Guillorn, ACS Nano 8, 5227 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    I. Karageorgos, J. Ryckaert, M.C. Tung, H.-S.P. Wong, R. Gronheid, J. Bekaert, E. Karageorgos, K. Croes, G. Vandenberghe, M. Stucchi, W. Dehaene, L. Capodieci, J.P. Cain, Eds. (International Society for Optics and Photonics, San Jose, CA, 2016), http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2222041), vol. 9781, p. 97810N.

  12. 12.

    H. Yi, X.-Y. Bao, R. Tiberio, H.-S.P. Wong, Nano Lett. 15, 805 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    S.-J. Jeong, J.Y. Kim, B.H. Kim, H.-S. Moon, S.O. Kim, Mater. Today 16, 468 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    T.A. Brunner, X. Chen, A. Gabor, C. Higgins, L. Sun, C.A. Mack, E.M. Panning, K.A. Goldberg, Eds. (International Society for Optics and Photonics, San Jose, CA, 2017), http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2258660), vol. 10143, p. 101430E.

  15. 15.

    R. Gronheid, C. Boeckx, J. Doise, J. Bekaert, I. Karageorgos, J. Ruckaert, B.T. Chan, C. Lin, Y. Zou, E.M. Panning, K.A. Goldberg, Eds. (International Society for Optics and Photonics, San Jose, CA, 2016), http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2219876), vol. 9776, p. 97761W.

  16. 16.

    L. Wan, R. Ruiz, H. Gao, K.C. Patel, T.R. Albrecht, J. Yin, J. Kim, Y. Cao, G. Lin, ACS Nano 9, 7506 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    C.M. Bates, M.J. Maher, D.W. Janes, C.J. Ellison, C.G. Willson, Macromolecules 47, 2 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Q. Peng, Y.-C. Tseng, S.B. Darling, J.W. Elam, ACS Nano 5 (6), 4600 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    T.R. Albrecht, H. Arora, V. Ayanoor-Vitikkate, J.-M. Beaujour, D. Bedau, D. Berman, A.L. Bogdanov, Y.-A. Chapuis, J. Cushen, E.E. Dobisz, G. Doerk, H. Gao, M. Grobis, B. Gurney, W. Hanson, O. Hellwig, T. Hirano, P.-O. Jubert, D. Kercher, J. Lille, Z. Liu, C.M. Mate, Y. Obukhov, K.C. Patel, K. Rubin, R. Ruiz, M. Schabes, Wan, D. Weller, T.-W. Wu, E. Yang, IEEE Trans. Magn. 51, 1 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    X. Yang, S. Xiao, W. Hu, J. Hwu, R. van de Veerdonk, K. Wago, K. Lee, D. Kuo, Nanotechnology 25, 395301 (2014).

    Article  CAS  Google Scholar 

  21. 21.

    L. Wan, R. Ruiz, H.H. Gao, K.C. Patel, J. Lille, G. Zeltzer, E.A. Dobisz, A. Bogdanov, T.R. Albrecht, P.F. Nealey, J. Micro Nanolithogr. MEMS MOEMS 11 (3), 031405 (2012).

    Article  CAS  Google Scholar 

  22. 22.

    G.S. Doerk, H. Gao, L. Wan, J. Lille, K.C. Patel, Y.-A. Chapuis, R. Ruiz, T.R. Albrecht, Nanotechnology 26, 085304 (2015).

    Article  CAS  Google Scholar 

  23. 23.

    S. Xiong, Y.-A. Chapuis, L. Wan, H. Gao, X. Li, R. Ruiz, P.F. Nealey, Nanotechnology 27, 415601 (2016).

    Article  CAS  Google Scholar 

  24. 24.

    A.P. Lane, X. Yang, M.J. Maher, G. Blachut, Y. Asano, Y. Someya, A. Mallavarapu, S.M. Sirard, C.J. Ellison, C.G. Willson, ACS Nano 11, 7656 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    L. Wan, R. Ruiz, ACS Appl. Mater. Interfaces 11, 20333 (2019).

    CAS  Article  Google Scholar 

  26. 26.

    C.M. Bates, T. Seshimo, M.J. Maher, W.J. Durand, J.D. Cushen, L.M. Dean, G. Blachut, C.J. Ellison, C.G. Willson, Science (80), 338, 775 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    L.D. Williamson, R.N. Seidel, X. Chen, H.S. Suh, P. Rincon Delgadillo, R. Gronheid, P.F. Nealey, ACS Appl. Mater. Interfaces 8, 2704 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    J. Cushen, L. Wan, G. Blachut, M.J. Maher, T.R. Albrecht, C.J. Ellison, C.G. Willson, R. Ruiz, ACS Appl. Mater. Interfaces 7, 13476 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    S. Xiao, X. Yang, P. Steiner, Y. Hsu, K. Lee, K. Wago, D. Kuo, ACS Nano 8, 11854 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    X. Yang, S. Xiao, Y. Hsu, H. Wang, J. Hwu, P. Steiner, K. Wago, K. Lee, D. Kuo, J. Micro Nanolithogr. MEM. 13, 031307 (2014).

    Article  CAS  Google Scholar 

  31. 31.

    K. Hono, Y.K. Takahashi, G. Ju, J.-U. Thiele, A. Ajan, X. Yang, R. Ruiz, L. Wan, MRS Bull. 43, 93 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    P. Reiss, M. Carrière, C. Lincheneau, L. Vaure, S. Tamang, Chem. Rev. 116, 10731 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    M.A. Boles, D. Ling, T. Hyeon, D.V. Talapin, Nat. Mater. 15, 141 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    M.A. Boles, M. Engel, D.V. Talapin, Chem. Rev. 116, 11220 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    C.R. Kagan, E. Lifshitz, E.H. Sargent, D.V. Talapin, Science (80), 353, aac5523 (2016).

  36. 36.

    J. Yang, M.K. Choi, D.-H. Kim, T. Hyeon, Adv. Mater. 28, 1176 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    S. Shaw, T.F. Silva, J.M. Bobbitt, F. Naab, C.L. Rodrigues, B. Yuan, J.J. Chang, X. Tian, E.A. Smith, L. Cademartiri, Chem. Mater. 29, 7888 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    C. Hogg, Y. Picard, A. Narasimhan, J. Bain, S. Majetich, Nanotechnology 24 (2013), doi:10.1088/0957–4484/24/8/085303.

  39. 39.

    M. Asbahi, S. Mehraeen, F. Wang, N. Yakovlev, K.S.L. Chong, J. Cao, M.C. Tan, J.K.W. Yang, Nano Lett. 15, 6066 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    C. Yi, Y. Yang, B. Liu, J. He, Z. Nie, Chem. Soc. Rev. 49, 465 (2020).

    CAS  Article  Google Scholar 

  41. 41.

    C.N. Likos, Soft Matter 2, 478 (2006).

    CAS  Article  Google Scholar 

  42. 42.

    H. Yun, J.W. Yu, Y.J. Lee, J.-S. Kim, C.H. Park, C. Nam, J. Han, T.-Y. Heo, S.-H. Choi, D.C. Lee, W.B. Lee, G.E. Stein, B.J. Kim, Chem. Mater. 31, 5264 (2019).

    CAS  Article  Google Scholar 

  43. 43.

    J. Che, K. Park, C.A. Grabowski, A. Jawaid, J. Kelley, H. Koerner, R.A. Vaia, Macromolecules 49, 1834 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    J. Chen, A. Fasoli, J.D. Cushen, L. Wan, R. Ruiz, Macromolecules 50, 9636 (2017).

    CAS  Article  Google Scholar 

  45. 45.

    A. Watanabe, N. Kihara, T. Okino, R. Yamamoto, J. Photopolym. Sci. Technol. 28, 643 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    X. Ye, C. Zhu, P. Ercius, S.N. Raja, B. He, M.R. Jones, M.R. Hauwiller, Y. Liu, T. Xu, A.P. Alivisatos, Nat. Commun. 6, 10052 (2015).

    Article  CAS  Google Scholar 

  47. 47.

    V.B. Leffler, L. Mayr, P. Paciok, H. Du, R.E. Dunin-Borkowski, M. Dulle, S. Förster, Angew. Chem. Int. Ed. 58, 8541 (2019).

    CAS  Article  Google Scholar 

  48. 48.

    A.T. Fafarman, S.-H. Hong, H. Caglayan, X. Ye, B.T. Diroll, T. Paik, N. Engheta, C.B. Murray, C.R. Kagan, Nano Lett. 13, 350 (2013).

    CAS  Article  Google Scholar 

  49. 49.

    C.R. Kagan, C.B. Murray, Nat. Nanotechnol. 10, 1013 (2015).

    CAS  Article  Google Scholar 

  50. 50.

    J.-S. Lee, M. V Kovalenko, J. Huang, D.S. Chung, D.V Talapin, Nat. Nanotechnol. 6, 348 (2011).

    CAS  Article  Google Scholar 

  51. 51.

    J.-H.H. Choi, A.T. Fafarman, S.J. Oh, D.-K.K. Ko, D.K. Kim, B.T. Diroll, S. Muramoto, G. Gillen, C.B. Murray, C.R. Kagan, J.G. Gillen, C.B. Murray, C.R. Kagan, Nano Lett. 12, 2631 (2012).

    CAS  Article  Google Scholar 

  52. 52.

    J.-H. Choi, H. Wang, S.J. Oh, T. Paik, P.S. Jo, J. Sung, X. Ye, T. Zhao, B.T. Diroll, C.B. Murray, C.R. Kagan, Science (80), 352 (2016), doi:10.1126/science.aad0371.

  53. 53.

    F.S. Stinner, Y. Lai, D.B. Straus, B.T. Diroll, D.K. Kim, C.B. Murray, C.R. Kagan, Nano Lett. 15, 7155 (2015).

    CAS  Article  Google Scholar 

  54. 54.

    W. Liu, J.-S. Lee, D.V Talapin, J. Am. Chem. Soc. 135, 1349 (2013).

    CAS  Article  Google Scholar 

  55. 55.

    H. Wang, D.J. Butler, D.B. Straus, N. Oh, F. Wu, J. Guo, K. Xue, J.D. Lee, C.B. Murray, C.R. Kagan, ACS Nano 13, 2324 (2019).

    CAS  Google Scholar 

  56. 56.

    C.R. Kagan, Chem. Soc. Rev. 48, 1626 (2019).

    CAS  Article  Google Scholar 

  57. 57.

    S. Choi, H. Lee, R. Ghaffari, T. Hyeon, D.-H. Kim, Adv. Mater. 28, 4203 (2016).

    CAS  Article  Google Scholar 

  58. 58.

    J. Kim, R. Ghaffari, D.-H. Kim, Nat. Biomed. Eng. 1, 0049 (2017).

    Article  Google Scholar 

  59. 59.

    J.A. Rogers, M.G. Lagally, R.G. Nuzzo, Nature 477, 45 (2011).

    CAS  Article  Google Scholar 

  60. 60.

    D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J.E. Lee, C. Song, S.J. Kim, D.J. Lee, S.W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C.S. Hwang, N. Lu, T. Hyeon, D.-H. Kim, Nat. Nanotechnol. 9, 397 (2014).

    CAS  Article  Google Scholar 

  61. 61.

    J. Kim, D. Son, M. Lee, C. Song, J.-K. Song, J.H. Koo, D.J. Lee, H.J. Shim, J.H. Kim, M. Lee, T. Hyeon, D.-H. Kim, Sci. Adv. 2, e1501101 (2016).

    Article  Google Scholar 

  62. 62.

    D. Son, S.I. Chae, M. Kim, M.K. Choi, J. Yang, K. Park, V.S. Kale, J.H. Koo, C. Choi, M. Lee, J.H. Kim, T. Hyeon, D.-H. Kim, Adv. Mater. 28, 9326 (2016).

    CAS  Article  Google Scholar 

  63. 63.

    M.K. Choi, J. Yang, K. Kang, D.C. Kim, C. Choi, C. Park, S.J. Kim, S.I. Chae, T.-H. Kim, J.H. Kim, T. Hyeon, D.-H. Kim, Nat. Commun. 6, 7149 (2015).

    CAS  Article  Google Scholar 

  64. 64.

    J. Kim, H.J. Shim, J. Yang, M.K. Choi, D.C. Kim, J. Kim, T. Hyeon, D.-H. Kim, Adv. Mater. 29, 1700217 (2017).

    Article  CAS  Google Scholar 

  65. 65.

    M.K. Choi, J. Yang, D.C. Kim, Z. Dai, J. Kim, H. Seung, V.S. Kale, S.J. Sung, C.R. Park, N. Lu, T. Hyeon, D.-H. Kim, Adv. Mater. 30, 1703279 (2018).

    Article  CAS  Google Scholar 

  66. 66.

    S. Choi, J. Park, W. Hyun, J. Kim, J. Kim, Y.B. Lee, C. Song, H.J. Hwang, J.H. Kim, T. Hyeon, D.-H. Kim, ACS Nano 9, 6626 (2015).

    CAS  Article  Google Scholar 

  67. 67.

    J. Park, S. Choi, A.H. Janardhan, S.-Y. Lee, S. Raut, J. Soares, K. Shin, S. Yang, C. Lee, K.-W. Kang, H.R. Cho, S.J. Kim, P. Seo, W. Hyun, S. Jung, H.-J. Lee, N. Lee, S.H. Choi, M. Sacks, N. Lu, M.E. Josephson, T. Hyeon, D.-H. Kim, H.J. Hwang, Sci. Transl. Med. 8, 344ra86 (2016).

  68. 68.

    S. Choi, S.I. Han, D. Jung, H.J. Hwang, C. Lim, S. Bae, O.K. Park, C.M. Tschabrunn, M. Lee, S.Y. Bae, J.W. Yu, J.H. Ryu, S.-W. Lee, K. Park, P.M. Kang, W.B. Lee, R. Nezafat, T. Hyeon, D.-H. Kim, Nat. Nanotechnol. 13, 1048 (2018).

    CAS  Article  Google Scholar 

  69. 69.

    S. Sunwoo, S.I. Han, H. Kang, Y.S. Cho, D. Jung, C. Lim, C. Lim, M. Cha, S. Lee, T. Hyeon, D. Kim, Adv. Mater. Technol. 5, 2070014 (2020).

    Article  Google Scholar 

  70. 70.

    C. Choi, M.K. Choi, S. Liu, M.S. Kim, O.K. Park, C. Im, J. Kim, X. Qin, G.J. Lee, K.W. Cho, M. Kim, E. Joh, J. Lee, D. Son, S.-H. Kwon, N.L. Jeon, Y.M. Song, N. Lu, D.-H. Kim, Nat. Commun. 8, 1664 (2017).

    Article  CAS  Google Scholar 

  71. 71.

    J. Lee, H.R. Cho, G.D. Cha, H. Seo, S. Lee, C.-K. Park, J.W. Kim, S. Qiao, L. Wang, D. Kang, T. Kang, T. Ichikawa, J. Kim, H. Lee, W. Lee, S. Kim, S.-T. Lee, N. Lu, T. Hyeon, S.H. Choi, D.-H. Kim, Nat. Commun. 10, 5205 (2019).

    Article  CAS  Google Scholar 

  72. 72.

    H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari, L. Wang, H.J. Choi, T.D. Chung, N. Lu, T. Hyeon, S.H. Choi, D.-H. Kim, Nat. Nanotechnol. 11, 566 (2016).

    Article  CAS  Google Scholar 

  73. 73.

    K.W. Cho, S.J. Kim, J. Kim, S.Y. Song, W.H. Lee, L. Wang, M. Soh, N. Lu, T. Hyeon, B.-S. Kim, D.-H. Kim, Nat. Commun. 10, 4824 (2019).

    Article  CAS  Google Scholar 

  74. 74.

    M. Bathe, L.A. Chrisey, D.J.C. Herr, Q. Lin, D. Rasic, A.T. Woolley, R.M. Zadegan, V.V. Zhirnov, Nano Futures 3, 012001 (2019).

    CAS  Article  Google Scholar 

  75. 75.

    A. Gopinath, P.W.K. Rothemund, ACS Nano 8, 12030 (2014).

    CAS  Article  Google Scholar 

  76. 76.

    H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, T.H. LaBean, Science (80), 301 (2003).

    Google Scholar 

  77. 77.

    T. Xie, A. Vora, P.J. Mulcahey, S.E. Nanescu, M. Singh, D.S. Choi, J.K. Huang, C.C. Liu, D.P. Sanders, J.I. Hahm, ACS Nano 10, 7705 (2016).

    CAS  Article  Google Scholar 

  78. 78.

    Q.Y. Lin, J.A. Mason, Z. Li, W. Zhou, M.N. O'Brien, K.A. Brown, M.R. Jones, S. Butun, B. Lee, V.P. Dravid, K. Aydin, C.A. Mirkin, Science (80), 359 (2018).

    Google Scholar 

Download references

Acknowledgments

C.R.K. is grateful for support from the National Science Foundation (NSF) Materials Research Science and Engineering Center (MRSEC) under Award No. DMR-1720530. T.H. and D.-H.K. acknowledge support from the Institute for Basic Science (IBS-R006-A1 and IBS-R006-D1). M.C.T. is supported in part by an NSF Graduate Research Fellowship. H.S.P.W. acknowledges support from the Stanford Non-Volatile Memory Technology Initiative and the Stanford SystemX Alliance. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ricardo Ruiz.

Supplementary Materials

Supplementary Materials

Cherie R. Kagan is the Stephen J. Angello Professor of Electrical and Systems Engineering, Materials Science and Engineering, and Chemistry at the University of Pennsylvania. She received her PhD degree in materials science and engineering from the Massachusetts Institute of Technology in 1996 and completed postdoctoral research at Bell Labs. In 1998, Kagan joined the IBM T.J. Watson Research Center. Her research focuses on nanostructured materials and their devices. She is an associate editor for ACS Nano and vice president of the Materials Research Society. Kagan can be reached by email at kagan@seas.upenn.edu.

Taeghwan Hyeon is a Seoul National University Distinguished Professor and a director of the Center for Nanoparticle Research of the Institute for Basic Science at Seoul National University, South Korea. His research focuses on synthesis and applications of uniform-sized nanoparticles and related nanostructured materials. He is Fellow of the Royal Society of Chemistry and the Materials Research Society. His awards include the Korea S&T Award from the Korean President, the Samsung Ho-Am Prize, the POSCO Award, and the The International Union for Vacuum Science, Technique, and Applications Prize. Since 2010, he has served as an associate editor of the Journal of the American Chemical Society. Hyeon can be reached by email at thyeon@snu.ac.kr.

Dae-Hyeong Kim is an associate professor in the School of Chemical and Biological Engineering at Seoul National University, South Korea. He obtained his BS and MS degrees in chemical engineering from Seoul National University in 2000 and 2002, respectively. He received his PhD degree in materials science and engineering from the University of Illinois at Urbana-Champaign in 2009. He has served as an associate director of the Center for Nanoparticle Research at the Institute for Basic Science since 2017. Kim can be reached by email at dkim98@snu.ac.kr.

Ricardo Ruiz is a staff scientist at Lawrence Berkeley National Laboratory. He received his PhD degree in physics from Vanderbilt University in 2003. From 2006 to 2019, he held various appointments at Hitachi GST/HGST/Western Digital. His research focuses on soft matter physics, self-assembly and nanofabrication. He is a Fellow of the American Physical Society. Ruiz can be reached by email at Ricardo.Ruiz@lbl.gov.

Maryann C. Tung is a doctoral candidate in electrical engineering at Stanford University. She received her BS degree in electrical engineering from the University of Illinois at Urbana-Champaign in 2013, and her MS degree in electrical engineering from Stanford University in 2016. Her research focuses on the use of block copolymer-directed self-assembly to pattern next-generation logic and memory devices. She is a recipient of the National Science Foundation Graduate Research Fellowship. Tung can be reached by email at tungmc@stanford.edu.

H.-S. Philip Wong is the Willard R. and Inez Kerr Bell Professor in the School of Engineering at Stanford University. He joined Stanford University as professor of electrical engineering in 2004. From 1988 to 2004, he was with the IBM T.J. Watson Research Center. Since 2020, he has been the chief scientist of TSMC. He is a Fellow of the IEEE and received the IEEE Electron Devices Society J.J. Ebers Award for pioneering contributions to the scaling of silicon devices and technology. Wong can be reached by email at hspwong@stanford.edu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kagan, C.R., Hyeon, T., Kim, DH. et al. Self-assembly for electronics. MRS Bulletin 45, 807–814 (2020). https://doi.org/10.1557/mrs.2020.248

Download citation