Skip to main content

Advertisement

Log in

Self-assembled materials for electrochemical energy storage

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Electrochemical energy-storage systems such as supercapacitors and lithium-ion batteries require complex intertwined networks that provide fast transport pathways for ions and electrons without interfering with their energy density. Self-assembly of nanomaterials into hierarchical structures offers exciting possibilities to create such pathways. This article summarizes recent research achievements in self-assembled zero-dimensional, one-dimensional, and two-dimensional nanomaterials, ordered pore structure materials, and the interfaces between these. We analyze how self-assembly strategies can create storage architectures that improve device performance toward higher energy densities, longevity, rate capability, and device safety. At the end, the remaining challenges of scalable low-cost manufacturing and future opportunities such as self-healing are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. S. Chu, Y. Cui, N. Liu, Nat. Mater. 16, 16 (2017).

    Article  CAS  Google Scholar 

  2. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev. 111, 3577 (2011).

    Article  CAS  Google Scholar 

  3. M. Armand, J.M. Tarascon, Nature 451, 652 (2008).

    Article  CAS  Google Scholar 

  4. N.-S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Angew. Chem. Int. Ed. 51, 9994 (2012).

    Article  CAS  Google Scholar 

  5. S. Müller, M. Lippuner, M. Verezhak, V. De Andrade, F. De Carlo, V. Wood, Adv. Energy Mater. 10, 1904119 (2020).

    Article  CAS  Google Scholar 

  6. G.X. Wang, J. Yao, H.K. Liu, Electrochem. Solid-State Lett. 7, A250 (2004).

    Article  CAS  Google Scholar 

  7. M.F. Lagadec, R. Zahn, V. Wood, Nat. Energy 4, 16 (2019).

    Article  CAS  Google Scholar 

  8. K. Xu, Chem. Rev. 114, 11503 (2014).

    Article  CAS  Google Scholar 

  9. E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Science 366, eaan8285 (2019).

    Article  CAS  Google Scholar 

  10. J. Wang, Y. Cui, D. Wang, Adv. Mater. 31, 1801993 (2019).

    Article  CAS  Google Scholar 

  11. N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee, W. Zhao, Y. Cui, Nat. Nanotechnol. 9, 187 (2014).

    Article  CAS  Google Scholar 

  12. W. Li, Z. Liang, Z. Lu, H. Yao, Z.W. Seh, K. Yan, G. Zheng, Y. Cui, Adv. Energy Mater. 5, 1500211 (2015).

    Article  CAS  Google Scholar 

  13. H. Zhang, X. Yu, P.V. Braun, Nat. Nanotechnol. 6, 277 (2011).

    Article  CAS  Google Scholar 

  14. M.G. Boebinger, O. Yarema, M. Yarema, K.A. Unocic, R.R. Unocic, V. Wood, M.T. McDowell, Nat. Nanotechnol. 15, 475 (2020).

    Article  CAS  Google Scholar 

  15. C. Chen, Y. Fan, J. Gu, L. Wu, S. Passerini, L. Mai, J. Phys. D Appl. Phys. 51, 113002 (2018).

    Article  CAS  Google Scholar 

  16. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3, 31 (2008).

    Article  CAS  Google Scholar 

  17. G. Zhou, L. Xu, G. Hu, L. Mai, Y. Cui, Chem. Rev. 119, 11042 (2019).

    Article  CAS  Google Scholar 

  18. L.-F. Chen, Y. Feng, H.-W. Liang, Z.-Y. Wu, S.-H. Yu, Adv. Energy Mater. 7, 1700826 (2017).

    Article  CAS  Google Scholar 

  19. W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang, A.D. Sendek, Y. Cui, Nat. Energy 2, 17035 (2017).

    Article  CAS  Google Scholar 

  20. H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui, Nat. Nanotechnol. 7, 310 (2012).

    Article  CAS  Google Scholar 

  21. Z. Yu, B. Duong, D. Abbitt, J. Thomas, Adv. Mater. 25, 3302 (2013).

    Article  CAS  Google Scholar 

  22. D. Han, J. Zhang, Z. Weng, D. Kong, Y. Tao, F. Ding, D. Ruan, Q.-H. Yang, Mater. Today Energy 11, 30 (2019).

    Article  Google Scholar 

  23. X. Wang, Q. Weng, Y. Yang, Y. Bando, D. Golberg, Chem. Soc. Rev. 45, 4042 (2016).

    Article  CAS  Google Scholar 

  24. B. Anasori, M.R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2, 16098 (2017).

    Article  CAS  Google Scholar 

  25. H. Chen, G. Zhou, D. Boyle, J. Wan, H. Wang, D. Lin, D. Mackanic, Z. Zhang, S. C. Kim, H.R. Lee, H. Wang, W. Huang, Y. Ye, Y. Cui, Matter 2, 1605 (2020).

    Article  Google Scholar 

  26. K.P.C. Yao, J.S. Okasinski, K. Kalaga, I.A. Shkrob, D.P. Abraham, Energy Environ. Sci. 12, 656 (2019).

    Article  CAS  Google Scholar 

  27. Y. Liu, Y. Zhu, Y. Cui, Nat. Energy 4, 540 (2019).

    Article  Google Scholar 

  28. C. Wang, Y. Gong, J. Dai, L. Zhang, H. Xie, G. Pastel, B. Liu, E. Wachsman, H. Wang, L. Hu, J. Am. Chem. Soc. 139, 14257 (2017).

    Article  CAS  Google Scholar 

  29. V. Wood, M.O.J. Ebner, “Method for the Production of Electrodes and Electrodes Made Using Such a Method”, US Patent 10,374,219 (2019).

    Google Scholar 

  30. H. Chen, A. Pei, J. Wan, D. Lin, R. Vilá, H. Wang, D. Mackanic, H.-G. Steinrück, W. Huang, Y. Li, A. Yang, J. Xie, Y. Wu, H. Wang, Y. Cui, Joule 4, 938 (2020).

    Article  CAS  Google Scholar 

  31. Y. Xia, T.S. Mathis, M.-Q. Zhao, B. Anasori, A. Dang, Z. Zhou, H. Cho, Y. Gogotsi, S. Yang, Nature 557, 409 (2018).

    Article  CAS  Google Scholar 

  32. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23, 4248 (2011).

    Article  CAS  Google Scholar 

  33. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.-M. Cheng, Nat. Mater. 10, 424 (2011).

    Article  CAS  Google Scholar 

  34. Z. Chen, L. Jin, W. Hao, W. Ren, H.M. Cheng, Mater. Today Nano 5, 100027 (2019).

    Article  Google Scholar 

  35. F. Bu, M.M. Zagho, Y. Ibrahim, B. Ma, A. Elzatahry, D. Zhao, Nano Today 30, 100803 (2020).

    Article  CAS  Google Scholar 

  36. L.S. Xie, G. Skorupskii, M. Dincă, Chem. Rev. 120, 8536 (2020).

    Article  CAS  Google Scholar 

  37. X. Li, H. Wang, H. Chen, Q. Zheng, Q. Zhang, H. Mao, Y. Liu, S. Cai, B. Sun, C. Dun, M.P. Gordon, H. Zheng, J.A. Reimer, J.J. Urban, J. Ciston, T. Tan, E.M. Chan, J. Zhang, Y. Liu, Chem 6, 933 (2020).

    Article  CAS  Google Scholar 

  38. X.-C. Xie, K.-J. Huang, X. Wu, J. Mater. Chem. A 6, 6754 (2018).

    Article  CAS  Google Scholar 

  39. J. Wang, N. Li, Y. Xu, H. Pang, Chem. Eur. J. 26, 6402 (2020).

    Article  CAS  Google Scholar 

  40. M.L. Aubrey, J.R. Long, J. Am. Chem. Soc. 137, 13594 (2015).

    Article  CAS  Google Scholar 

  41. D. Feng, T. Lei, M.R. Lukatskaya, J. Park, Z. Huang, M. Lee, L. Shaw, S. Chen, A.A. Yakovenko, A. Kulkarni, J. Xiao, K. Fredrickson, J.B. Tok, X. Zou, Y. Cui, Z. Bao, Nat. Energy 3, 30 (2018).

    Article  CAS  Google Scholar 

  42. S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Nat. Energy 1, 16094 (2016).

    Article  CAS  Google Scholar 

  43. P.S. Herle, B. Ellis, N. Coombs, L.F. Nazar, Nat. Mater. 3, 147 (2004).

    Article  CAS  Google Scholar 

  44. D.-W. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H.-M. Cheng, I.R. Gentle, G.Q.M. Lu, J. Mater. Chem. A 1, 9382 (2013).

    Article  CAS  Google Scholar 

  45. W.-H. Ryu, J.-W. Jung, K. Park, S.-J. Kim, I.-D. Kim, Nanoscale 6, 10975 (2014).

    Article  CAS  Google Scholar 

  46. S. Tepavcevic, Y. Liu, D. Zhou, B. Lai, J. Maser, X. Zuo, H. Chan, P. Král, C.S. Johnson, V. Stamenkovic, N.M. Markovic, T. Rajh, ACS Nano 9, 8194 (2015).

    Article  CAS  Google Scholar 

  47. S. Luo, L. Xie, F. Han, W. Wei, Y. Huang, H. Zhang, M. Zhu, O.G. Schmidt, L. Wang, Adv. Funct. Mater. 29, 1901336 (2019).

    Article  CAS  Google Scholar 

  48. S. Müller, P. Pietsch, B.-E. Brandt, P. Baade, V. De Andrade, F. De Carlo, V. Wood, Nat. Commun. 9, 2340 (2018).

    Article  CAS  Google Scholar 

  49. X. Wang, Y. Li, Y.S. Meng, Joule 2, 2225 (2018).

    Article  CAS  Google Scholar 

  50. W. Huang, P.M. Attia, H. Wang, S.E. Renfrew, N. Jin, S. Das, Z. Zhang, D.T. Boyle, Y. Li, M.Z. Bazant, B.D. McCloskey, W.C. Chueh, Y. Cui, Nano Lett. 19, 5140 (2019).

    Article  CAS  Google Scholar 

  51. M.J. Zachman, Z. Tu, S. Choudhury, L.A. Archer, L.F. Kourkoutis, Nature 560, 345 (2018).

    Article  CAS  Google Scholar 

  52. Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C.-L. Wu, L.-M. Joubert, R. Chin, A.L. Koh, Y. Yu, J. Perrino, B. Butz, S. Chu, Y. Cui, Science 358, 506 (2017).

    Article  CAS  Google Scholar 

  53. C. Wang, Y.S. Meng, K. Xu, J. Electrochem. Soc. 166, A5184 (2018).

    Article  CAS  Google Scholar 

  54. H. Liu, A.J. Naylor, A.S. Menon, W.R. Brant, K. Edström, R. Younesi, Adv. Mater. Interfaces 7, 2000277 (2020).

    Article  CAS  Google Scholar 

  55. J.A. Lewis, J. Tippens, F.J.Q. Cortes, M.T. McDowell, Trends Chem. 1, 845 (2019).

    Article  CAS  Google Scholar 

  56. A. Banerjee, X. Wang, C. Fang, E.A. Wu, Y.S. Meng, Chem. Rev. 120, 6878 (2020).

    Article  CAS  Google Scholar 

  57. F. Lv, Z. Wang, L. Shi, J. Zhu, K. Edström, J. Mindemark, S. Yuan, J. Power Sources 441, 227175 (2019).

    Article  CAS  Google Scholar 

  58. Y. Li, H. Chen, K. Lim, H.D. Deng, J. Lim, D. Fraggedakis, P.M. Attia, S.C. Lee, N. Jin, J. Moškon, Z. Guan, W.E. Gent, J. Hong, Y.-S. Yu, M. Gaberšček, M.S. Islam, M.Z. Bazant, W.C. Chueh, Nat. Mater. 17, 915 (2018).

    Article  CAS  Google Scholar 

  59. W. Zhang, H.-C. Yu, L. Wu, H. Liu, A. Abdellahi, B. Qiu, J. Bai, B. Orvananos, F.C. Strobridge, X. Zhou, Z. Liu, G. Ceder, Y. Zhu, K. Thornton, C.P. Grey, F. Wang, Sci. Adv. 4, eaao2608 (2018).

    Article  CAS  Google Scholar 

  60. P. Benedek, O.K. Forslund, E. Nocerino, N. Yazdani, N. Matsubara, Y. Sassa, F. Jurànyi, M. Medarde, M. Telling, M. Månsson, V. Wood, ACS Appl. Mater. Interfaces 12, 16243 (2020).

    Article  CAS  Google Scholar 

  61. D.L. Wood, J. Li, C. Daniel, J. Power Sources 275, 234 (2015).

    Article  CAS  Google Scholar 

  62. B. Gert, M. Messagie, J. Smekens, N. Omar, L. Vanhaverbeke, J.V. Mierlo, Energies 10, 1314 (2017).

    Article  Google Scholar 

  63. A. Kwade, W. Haselrieder, R. Leithoff, A. Modlinger, F. Dietrich, K. Droeder, Nat. Energy 3, 290 (2018).

    Article  Google Scholar 

  64. Y. Yan, X. Zhao, H. Dou, J. Wei, Z. Sun, Y.-S. He, Q. Dong, H. Xu, X. Yang, ACS Appl. Mater. Interfaces 12, 18541 (2020).

    Article  CAS  Google Scholar 

  65. C. Sauter, R. Zahn, V. Wood, J. Electrochem. Soc. 167, 100546 (2020).

    Article  CAS  Google Scholar 

  66. D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 12, 194 (2017).

    Article  CAS  Google Scholar 

  67. D. Chen, D. Wang, Y. Yang, Q. Huang, S. Zhu, Z. Zheng, Adv. Energy Mater. 7, 1700890 (2017).

    Article  CAS  Google Scholar 

  68. W. Chao, H. Wu, Z. Chen, M.T. McDowell, Y. Cui, Z. Bao, Nat. Chem. 5, 1042 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Y.C. acknowledges the support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, of the US Department of Energy under the Battery Materials Research Program and the Battery500 Consortium Program. P.B. and V.W. are funded by a European Research Council Starting Grant (860070). The authors also acknowledge the 3D rendering image of a microstructure provided by S. Mueller (ETH Zürich).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Supplementary Materials

Supplementary Materials

Hao Chen is a postdoctoral research associate at Stanford University. He earned his PhD degree from Zhejiang University, China, in 2017. He has more than six years of experience in developing high-performance Li-S battery material and Al-ion battery materials. Chen has authored/co-authored 29 peer-reviewed articles. His current research interests include Li-metal anode and sulfur cathode material design. Chen can be reached by email at haochen9@stanford.edu.

Peter Benedek is a graduate student at ETH Zürich, Switzerland. His current research focuses on charge dynamics in lithium-ion batteries, with a special focus on interfaces. He is co-chair of the Gordon research Seminar on Nanomaterials for Applications in Energy Technology, and he has six years of experience in energy-storage technologies. Benedek can be reached by email at benedekp@ethz.ch.

Khande-Jaé Fisher is an undergraduate student at Stanford University, pursuing a BS degree in materials science and engineering with a focus on energy. Her current research focuses on various battery materials and their applications. Fisher can be reached by email at kjfisher@stanford.edu.

Vanessa Wood is a professor and the head of the Department for Information Technology and Electrical Engineering at ETH Zürich, Switzerland. She received her BS degree in applied physics from Yale University in 2005, an MSc degree in electrical engineering and computer science from the Massachusetts Institute of Technology (MIT) in 2007, and a PhD degree in electrical engineering from MIT in 2009. She has published more than 80 publications and received the MRS Outstanding Young Investigator Award in 2018. Wood can be reached by email at vwood@ethz.ch.

Yi Cui is a professor in the Department of Materials Science and Engineering at Stanford University. He received his BS degree from the University of Science and Technology of China, and his PhD degree from Harvard University. He was a Miller Postdoctoral Fellow at the University of California, Berkeley, and joined the Stanford University faculty in 2005. His research interests focus on materials for sustainability, including energy and the environment. He has published approximately 490 research papers and has an H-index of 200 (Google). He is a Fellow of the Materials Research Society, The Electrochemical Society, and the Royal Society of Chemistry. Cui can be reached by email at yicui@stanford.edu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Benedek, P., Fisher, KJ. et al. Self-assembled materials for electrochemical energy storage. MRS Bulletin 45, 815–822 (2020). https://doi.org/10.1557/mrs.2020.247

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.247

Navigation