Skip to main content
Log in

Nanophotonic materials for space applications

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Space exemplifies the ultimate test-bed environment for any materials technology. The harsh conditions of space, with extreme temperature changes, lack of gravity and atmosphere, intense solar and cosmic radiation, and mechanical stresses of launch and deployment, represent a multifaceted set of challenges. The materials we engineer must not only meet these challenges, but they need to do so while keeping overall mass to a minimum and guaranteeing performance over long periods of time with no opportunity for repair. Nanophotonic materials—materials that embody structural variations on a scale comparable to the wavelength of light—offer opportunities for addressing some of these difficulties. Here, we examine how advances in nanophotonics and nanofabrication are enabling ultrathin and lightweight structures with unparalleled ability to shape light–matter interactions over a broad electromagnetic spectrum. From solar panels that can be fabricated in space to applications of light for propulsion, the next generation of lightweight and multifunctional photonic materials stands to both impact existing technologies and pave the way for new space technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. H. Jones, 48th Int. Conf. Environ. Syst. (2018), {rs https://ttu-ir.tdl.org/handle/2346/74082 url}.

  2. M. Swartwout, J. Small Satel. 2, 213 (2013).

    Google Scholar 

  3. National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Space Studies Board, Committee on Achieving Science Goals with CubeSats, Achieving Science with CubeSats: Thinking Inside the Box (National Academies Press, Washington, DC, 2016).

  4. B. Sherwood, S. Spangelo, A. Frick, J. Castillo-Rogez, A. Klesh, E.J. Wyatt, K. Reh, J. Baker, “Planetary CubeSats Come of Age,” presented at the 66th International Astronautical Congress, Jerusalem, Israel (2015), {rs https://trs.jpl.nasa.gov/bitstream/handle/2014/45903/15-4109_A1b.pdf?sequence=1 url}.

  5. Z. Manchester, M. Peck, “Stochastic Space Exploration with Microscale Spacecraft,” presented at the AIAA Guidance, Navigation and Control Conference, Control Conf., Portland, OR, 2011, {rs https://arc.aiaa.org/doi/pdf/10.2514/6.2011-6648 url}.

  6. T. Ghidini, Nat. Mater. 17, 8460 (2018).

    Google Scholar 

  7. I. Levchenko, K. Bazaka, T. Belmonte, M. Keidar, S. Xu, Adv. Mater. 30, 1802201 (2018).

    Google Scholar 

  8. “Across the Universe” [Editorial], Nat. Mater. 17, 845 (2018).

    Google Scholar 

  9. A.F. Koenderink, A. Alù, A. Polman, Science 348, 516 (2015).

    Google Scholar 

  10. N. Meinzer, W.L. Barnes, I.R. Hooper, Nat. Photonics 8, 889 (2014).

    Google Scholar 

  11. H.-T. Chen, A.J. Taylor, N. Yu, Rep. Prog. Phys. 79, 076401 (2016).

    Google Scholar 

  12. A.K. Geim, I.V. Grigorieva, Nature 499, 419 (2013).

    Google Scholar 

  13. S. Molesky, Z. Lin, A.Y. Piggott, W. Jin, J. Vucković, A.W. Rodriguez, Nat. Photonics 12, 659 (2018).

    Google Scholar 

  14. S. Bailey, R. Raffaelle, in Handbook of Photovoltaic Science and Engineering, A. Luque, S. Hegedus, Eds. (Wiley, Chichester, UK, 2010), vol. 25, pp. 365–401.

    Google Scholar 

  15. R. Campesato, A. Tukiainen, A. Aho, G. Gori, R. Isoaho, E. Greco, M. Guina, E3S Web Conf. 16, 03003 (2017).

    Google Scholar 

  16. T. Takamoto, H. Washio, H. Juso, 40th IEEE Photovolt. Specialist Conf. 1 (2014), doi:10.1109/PVSC.2014.6924936.

  17. S. Hubbard, C. Bailey, S. Polly, C.D. Cress, J. Andersen, D.V. Forbes, R.P. Raffaelle, J. Nanophotonics 3, 031880 (2009).

    Google Scholar 

  18. F. Suarez, T. Liu, A. Sukiasyan, J. Lang, E. Pickett, E. Lucow, T. Bilir, S. Chary, R. Roucka, I. Aeby, L. Zhang, S. Siala, 11th European Space Power Conf. 16, 03006 (2017).

  19. D. Kim, H.J. Jung, I.J. Park, B.W. Larson, S.P. Dunfield, C. Xiao, J. Kim, J. Tong, P. Boonmongkolras, S.G. Ji, F. Zhang, S.R. Pae, M. Kim, S.B. Kang, V. Dravid, J.J. Berry, J.Y. Kim, K. Zhu, D.H. Kim, B. Shin, Science 368, 155 (2020).

    Google Scholar 

  20. M. Kaltenbrunner, G. Adam, E.D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D.H. Apaydin, H. Groiss, M.C. Scharber, M.S. White, N.S. Sariciftci, S. Bauer, Nat. Mater. 14, 1032 (2015).

    Google Scholar 

  21. I. Cardinaletti, T. Vangerven, S. Nagels, R. Cornelissen, D. Schreurs, J. Hruby, J. Vodnik, D. Devisscher, J. Kesters, J. D'Haen, A. Franquet, V. Spampinato, T. Conard, W. Maes, W. Deferme, J.V. Manca, Sol. Energy Mater. Sol. Cells 182, 121 (2018).

    Google Scholar 

  22. Y. Wang, P. Wang, X. Zhou, C. Li, H. Li, X. Hu, F. Li, X. Liu, M. Li, Y. Song, Adv. Energy Mater. 8, 1702960 (2018).

    Google Scholar 

  23. U.W. Paetzold, W. Qiu, F. Finger, J. Poortmans, D. Cheyns, Appl. Phys. Lett. 106, 173101 (2015).

    Google Scholar 

  24. D. Chen, P. Manley, P. Tockhorn, J. Photonics Energy (2018), {rs https://www.spiedigitallibrary.org/journals/Journal-of-Photonics-for-Energy/volume-8/issue-2/022601/Nanophotonic-light-management-for-perovskitesilicon-tandem-solar-cells/10.1117/1.JPE.8.022601.short url}.

    Google Scholar 

  25. E.W. Taylor, R. Pirich, J. Weir, D. Leyble, S. Chu, L.R. Taylor, M. Velderrain, V. Malave, M. Barahman, A. Lyons, 35th IEEE Photovolt. Specialists Conf. 002636 (2010), doi:10.1109/PVSC.2010.5617191.

  26. Y. Miyazawa, M. Ikegami, H.-W. Chen, T. Ohshima, M. Imaizumi, K. Hirose, T. Miyasaka, iScience 2, 148 (2018).

    Google Scholar 

  27. J. Huang, M.D. Kelzenberg, P. Espinet-Gonzales, C. Mann, D. Walker, A. Naqavi, N. Vaidya, E. Warmann, H.A. Atwater. IEEE 44th Photovolt. Specialist Conf. (PVSC), pp. 1248–1252 (2017).

  28. E.C. Garnett, M.L. Brongersma, Y. Cui, M.D. McGehee, Annu. Rev. Mater. Res. 41, 269 (2011).

    Google Scholar 

  29. P. Espinet-Gonzalez, E. Barrigón, Y. Chen, G. Otnes, G. Vescovi, C. Mann, J.V. Lloyd, D. Walker, M.D. Kelzenberg, I. Åberg, M. Borgström, L. Samuelson, H.A. Atwater, IEEE J. Photovolt. 10, 502 (2020).

    Google Scholar 

  30. P.E. Glaser, Science 162, 857 (1968).

    Google Scholar 

  31. P. Jaffe, in Future Energy, 3rd ed. (Third Edition), T.M. Letcher, Ed. (Elsevier, Oxford, UK, 2020), pp. 519–542.

  32. Caltech Space Solar Power Project, {rs https://www.spacesolar.caltech.edu url}.

  33. M.D. Kelzenberg, P. Espinet-Gonzalez, N. Vaidya, T.A. Roy, E.C. Warmann, A. Naqavi, S.P. Loke, J. Huang, T.G. Vinogradova, A.J. Messer, C. Leclerc, E.E. Gdoutos, F. Royer, A. Hajimiri, S. Pellegrino, H.A. Atwater, 44th IEEE Photovolt. Specialist Conf. 558 (2017), doi:10.1109/PVSC.2017.8366621.

  34. E. Gdoutos, C. Leclerc, F. Royer, M.D. Kelzenberg, E.C. Warmann, P. Espinet-Gonzalez, N. Vaidya, F. Bohn, B. Abiri, M.R. Hashemi, M. Gal-Katziri, A. Fikes, H. Atwater, A. Hajimiri, S. Pellegrino, AIAA Spacecr. Struct. Conf. (2018), doi:10.2514/6.2018-2202.

    Google Scholar 

  35. A. Naqavi, S.P. Loke, M.D. Kelzenberg, D.M. Callahan, T. Tiwald, E.C. Warmann, P. Espinet-González, N. Vaidya, T.A. Roy, J.-S. Huang, T.G. Vinogradova, H.A. Atwater, Opt. Express 26, 18545 (2018).

    Google Scholar 

  36. E.C. Warmann, P. Espinet-Gonzalez, N. Vaidya, S. Loke, A. Naqavi, T. Vinogradova, M. Kelzenberg, C. Leclerc, E. Gdoutos, S. Pellegrino, H.A. Atwater, Acta Astronaut. 170, 443 (2020).

    Google Scholar 

  37. J.A. Angelo, D. Buden, Space Nuclear Power (Orbit Book, Malabar, FL, 1985).

    Google Scholar 

  38. G.H. Rinehart, Prog. Nucl. Energy 39, 305 (2001).

    Google Scholar 

  39. I. Petsagkourakis, K. Tybrandt, X. Crispin, I. Ohkubo, N. Satoh, T. Mori, Sci. Technol. Adv. Mater. 19, 836 (2018).

    Google Scholar 

  40. R. Sakakibara, V. Stelmakh, W.R. Chan, M. Ghebrebrhan, J.D. Joannopoulos, M. Soljacic, I. Čelanović, J. Parenter. Enteral Nutr. 9, 032713 (2019).

    Google Scholar 

  41. D.G. Baranov, Y. Xiao, I.A. Nechepurenko, A. Krasnok, A. Alù, M.A. Kats, Nat. Mater. (2019), doi:10.1038/s41563–019–0363-y.

    Google Scholar 

  42. W. Li, S. Fan, Opt. Express 26, 15995 (2018).

    Google Scholar 

  43. A. Lenert, D.M. Bierman, Y. Nam, W.R. Chan, I. Celanovic, M. Soljačić, E.N. Wang, Nat. Nanotechnol. 9, 126 (2014).

    Google Scholar 

  44. O. Ilic, P. Bermel, G. Chen, J.D. Joannopoulos, I. Celanovic, M. Soljačić, Nat. Nanotechnol. 11, 320 (2016).

    Google Scholar 

  45. P. Bermel, M. Ghebrebrhan, W. Chan, Y.X. Yeng, M. Araghchini, R. Hamam, C.H. Marton, K.F. Jensen, M. Soljačić, J.D. Joannopoulos, S.G. Johnson, I. Celanovic, Opt. Express 18, A314 (2010).

    Google Scholar 

  46. V. Rinnerbauer, S. Ndao, Y.X. Yeng, W.R. Chan, J.J. Senkevich, J.D. Joannopoulos, M. Soljačić, I. Celanovic, Energy Environ. Sci. 5, 8815 (2012).

    Google Scholar 

  47. W.R. Chan, P. Bermel, R.C.N. Pilawa-Podgurski, C.H. Marton, K.F. Jensen, J.J. Senkevich, J.D. Joannopoulos, M. Soljačić, I. Celanovic, Proc. Natl. Acad. Sci. U.S.A. 110, 5309 (2013).

  48. T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, S. Noda, Sci. Adv. 2, e1600499 (2016).

    Google Scholar 

  49. K.A. Arpin, M.D. Losego, A.N. Cloud, H. Ning, J. Mallek, N.P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G.N. Parsons, G.S. Girolami, J.R. Abelson, S. Fan, P.V. Braun, Nat. Commun. 4 (2013), doi:10.1038/ncomms3630.

  50. S.Y. Lin, J. Moreno, J.G. Fleming, Appl. Phys. Lett. 83, 380 (2003).

    Google Scholar 

  51. V. Rinnerbauer, Y.X. Yeng, W.R. Chan, J.J. Senkevich, J.D. Joannopoulos, M. Soljačić, I. Celanovic, Opt. Express 21, 11482 (2013).

    Google Scholar 

  52. V. Rinnerbauer, E. Lausecker, F. Schäffler, P. Reininger, G. Strasser, R.D. Geil, J.D. Joannopoulos, M. Soljačić, I. Celanovic, Optica 2, 743 (2015).

    Google Scholar 

  53. Z. Omair, G. Scranton, L.M. Pazos-Outón, T.P. Xiao, M.A. Steiner, V. Ganapati, P.F. Peterson, J. Holzrichter, H. Atwater, E. Yablonovitch, Proc. Natl. Acad. Sci. U.S.A. 116, 15356 (2019).

  54. N.-P. Harder, P. Würfel, Semicond. Sci. Technol. 18, S151 (2003).

    Google Scholar 

  55. D. Wilt, D. Chubb, D. Wolford, P. Magari, C. Crowley, AIP Conf. Proc. 890, 335 (2007).

  56. A. Datas, A. Martí, Sol. Energy Mater. Sol. Cells 161, 285 (2017).

    Google Scholar 

  57. X. Wang, W.R. Chan, V. Stelmakh, M. Soljacic, J.D. Joannopoulos, I. Celanovic, P.H. Fisher, J. Phys. Conf. Ser. 660, 012034 (2015).

  58. K. Sun, C.A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C.H. de Groot, O.L. Muskens, ACS Photonics 5, 495 (2018).

    Google Scholar 

  59. K. Sun, C.A. Riedel, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C.H. de Groot, O.L. Muskens, ACS Photonics 5, 2280 (2018).

    Google Scholar 

  60. M. Ono, K. Chen, W. Li, S. Fan, Opt. Express 26, A777 (2018).

    Google Scholar 

  61. S.-H. Wu, M. Chen, M.T. Barako, V. Jankovic, P.W.C. Hon, L.A. Sweatlock, M.L. Povinelli, Optica 4, 1390 (2017).

    Google Scholar 

  62. J. Rensberg, S. Zhang, Y. Zhou, A.S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D.N. Basov, F. Capasso, C. Ronning, M.A. Kats, Nano Lett. 16, 1050 (2016).

    Google Scholar 

  63. R.L. Forward, “Pluto—The Gateway to the Stars,” Missiles and Rockets 10, 26 (1962).

    Google Scholar 

  64. G. Marx, Nature 211, 22 (1966).

    Google Scholar 

  65. J.L. Redding, Nature 213, 588 (1967).

    Google Scholar 

  66. T.H. Maiman, Nature 187, 493 (1960).

    Google Scholar 

  67. L. Myrabo, D. Messitt, F. Mead Jr., 36th AIAA Aerospace Sciences Meeting and Exhibit (1998), doi:dx.doi.org/10.2514/6.1998-1001.

  68. J. Benford, IEEE Trans. Plasma Sci. 36, 569 (2008).

    Google Scholar 

  69. Y. Tsuda, O. Mori, R. Funase, H. Sawada, T. Yamamoto, T. Saiki, T. Endo, J. Kawaguchi, Acta Astronaut. 69, 833 (2011).

    Google Scholar 

  70. I. Levchenko, K. Bazaka, S. Mazouffre, S. Xu, Nat. Photonics 12, 649 (2018).

    Google Scholar 

  71. G. Bergstue, R. Fork, P. Reardon, Acta Astronaut. 96, 97 (2014).

    Google Scholar 

  72. C. Phipps, M. Birkan, W. Bohn, H.-A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, J. Sinko, J. Propul. Power 26, 609 (2010).

    Google Scholar 

  73. J.N. Benford, R. Dickinson, Proc. SPIE 2557, Intense Microwave Pulses III (1995), doi:dx.doi.org/10.1117/12.218549.

    Google Scholar 

  74. K.L.G. Parkin, L.D. DiDomenico, “The Microwave Thermal Thruster Concept,” AIP Conf. Proc. (2004), {rs https://aip.scitation.org/doi/abs/10.1063/1.1721020 url}.

  75. H. Daido, M. Nishiuchi, A.S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012).

    Google Scholar 

  76. A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751 (2013).

    Google Scholar 

  77. C. Phipps, W. Bohn, T. Lippert, A. Sasoh, W. Schall, J. Sinko, AIP Conf. Proc. 1278, 710 (2010).

  78. J.L. Rovey, P.D. Friz, C. Hu, M.S. Glascock, X. Yang, J. Spacecr. Rockets 52, 1163 (2015).

    Google Scholar 

  79. R.J. England, IEEE J. Sel. Top. Quantum Electron. 22, 171 (2016).

    Google Scholar 

  80. L. Johnson, R. Young, N. Barnes, L. Friedman, V. Lappas, C. McInnes, Int. J. Aeronaut. Space Sci. 13, 421 (2012).

    Google Scholar 

  81. J. Mansell, D.A. Spencer, B. Plante, A. Diaz, M. Fernandez, J. Bellardo, B. Betts, B. Nye, in AIAA Scitech 2020 Forum (American Institute of Aeronautics and Astronautics, 2020), AIAA SciTech Forum, doi:10.2514/6.2020-2177.

    Google Scholar 

  82. G. Swartzlander, L. Johnson, B. Betts, Opt. Photonics News 31, 30 (2020).

    Google Scholar 

  83. L. Johnson, J. Castillo-Rogez, J. Dervan, L. McNutt, “Near Earth Asteroid (NEA) Scout” (2017), {rs https://ntrs.nasa.gov/search.jsp?R=20170001499 url}.

    Google Scholar 

  84. Z. Sun, A. Martinez, F. Wang, Nat. Photonics 10, 227 (2016).

    Google Scholar 

  85. G.A. Swartzlander, J. Opt. Soc. Am. B 34, C25 (2017).

    Google Scholar 

  86. K. Achouri, O.V. Cespedes, C. Caloz, Solar “Meta-Sails for Agile Optical Force Control,” IEEE Trans. Antennas Propag. 67, 6924 (2019).

    Google Scholar 

  87. O. Ilic, H.A. Atwater, Nat. Photonics 13, 289 (2019).

    Google Scholar 

  88. J. Siegel, A.Y. Wang, S.G. Menabde, M.A. Kats, M.S. Jang, V.W. Brar, ACS Photonics 6, 2032 (2019).

    Google Scholar 

  89. P.R. Srivastava, Y.-J.L. Chu, G.A. Opt. Lett. 44, 3082 (2019).

    Google Scholar 

  90. A. Davoyan, “Novel Photonic Materials and Nanofabrications II,” presented at the Materials Research Society Fall Meeting, Boston, 2019.

  91. Y.-J.L. Chu, N.V. Tabiryan, G.A. Swartzlander, Phys. Rev. Lett. 123, 244302 (2019).

    Google Scholar 

  92. M.M. Salary, H. Mosallaei. Laser Photonics Rev. 5, 1900311 (2020).

    Google Scholar 

  93. Breakthrough Starshot Initiative, {rs https://breakthroughinitiatives.org/news/4 url}.

  94. J. Guillochon, A. Loeb, Astrophys. J. Lett. 811, L20 (2015).

    Google Scholar 

  95. P. Lubin, J. Br. Interplanet. Soc. 69, 40 (2016).

    Google Scholar 

  96. K.L.G. Parkin, Acta Astronaut. 152, 370 (2018).

    Google Scholar 

  97. G.A. Landis, “Optics and Materials Considerations for a Laser-Propelled Lightsail,” presented at the 40th Congress of the International Astronautical Federation (Malaga, Spain, 1989).

  98. H.A. Atwater, A.R. Davoyan, O. Ilic, D. Jariwala, M.C. Sherrott, C.M. Went, W.S. Whitney, J. Wong, Nat. Mater. 17, 861 (2018).

    Google Scholar 

  99. O. Ilic, C.M. Went, H.A. Atwater, Nano Lett. 18, 5583 (2018).

    Google Scholar 

  100. P. Srinivasan, G.B. Hughes, P. Lubin, Q. Zhang, J. Madajian, T. Brashears, N. Kulkarni, A. Cohen, J. Griswold, Proc. SPIE9981, Planetary Defense and Space Environment Applications (2016) 998105, doi:10.1117/12.2237715.

    Google Scholar 

  101. Z. Manchester, A. Loeb, Astrophys. J. 837, L20 (2017).

    Google Scholar 

  102. K.V. Myilswamy, A. Krishnan, M.L. Povinelli, Opt. Express 28, 8223 (2020).

    Google Scholar 

  103. F. Postberg, N. Khawaja, B. Abel, G. Choblet, C.R. Glein, M.S. Gudipati, B.L. Henderson, H.-W. Hsu, S. Kempf, F. Klenner, G. Moragas-Klostermeyer, B. Magee, L. Nölle, M. Perry, R. Reviol, J. Schmidt, R. Srama, F. Stolz, G. Tobie, M. Trieloff, J.H. Waite, Nature 558, 564 (2018).

    Google Scholar 

  104. K.J. Meech, R. Weryk, M. Micheli, J.T. Kleyna, O.R. Hainaut, R. Jedicke, R.J. Wainscoat, K.C. Chambers, J.V. Keane, A. Petric, L. Denneau, E. Magnier, T. Berger, M.E. Huber, H. Flewelling, C. Waters, E. Schunova-Lilly, S. Chastel, Nature 552, 378 (2017).

    Google Scholar 

  105. M.T. Gruneisen, B.A. Sickmiller, M.B. Flanagan, J.P. Black, K.E. Stoltenberg, A.W. Duchane, Opt. Eng. 55, 026104 (2016).

    Google Scholar 

  106. H. Takenaka, A. Carrasco-Casado, M. Fujiwara, M. Kitamura, M. Sasaki, M. Toyoshima, Nat. Photonics 11, 502 (2017).

    Google Scholar 

  107. S.-K. Liao, H.-L. Yong, C. Liu, G.-L. Shentu, D.-D. Li, J. Lin, H. Dai, S.-Q. Zhao, B. Li, J.-Y. Guan, W. Chen, Y.-H. Gong, Y. Li, Z.-H. Lin, G.-S. Pan, J.S. Pelc, M.M. Fejer, W.-Z. Zhang, W.-Y. Liu, J. Yin, J.-G. Ren, X.-B. Wang, Q. Zhang, C.-Z. Peng, J.-W. Pan, Nat. Photonics 11, 509 (2017).

    Google Scholar 

  108. L.J. Guo, Adv. Mater. 19, 495 (2007).

    Google Scholar 

  109. B. Kobrin, E.S. Barnard, M.L. Brongersma, M.K. Kwak, L.J. Guo, Proc. SPIE8249, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V (2012), vol.8249, p. 824900.

    Google Scholar 

Download references

Acknowledgments

O.I. acknowledges support from the 3M Foundation and the Minnesota Robotics Institute.

Authors

Appendix

Appendix

Ognjen Ilic is the Benjamin Mayhugh Assistant Professor in the Department of Mechanical Engineering at the University of Minnesota. He received his bachelor's degree in physics from Harvard University, his PhD degree in physics from the Massachusetts Institute of Technology, and completed postdoctoral research in applied physics and materials science at the California Institute of Technology. He recently received the 2020 Non-Tenured Faculty Award from the 3M Foundation. Ilic is the 2019 MRS Bulletin Postdoctoral Publication Prize winner. Ilic can be reached by email at ilic@umn.edu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilic, O. Nanophotonic materials for space applications. MRS Bulletin 45, 769–778 (2020). https://doi.org/10.1557/mrs.2020.223

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.223

Navigation