Skip to main content
Log in

A quantum hindsight on density functional theory for computation of materials properties

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Fundamental materials properties are determined by electrons under the potential energy from the nuclei, the electron mass, and their mutual repulsion. The variable from material to material is the ion potential. The logical procedure of computing electronic properties is to go from the potential to the electron distribution. This enables practical computation of the material properties ranging from atoms and molecules to solids. This method has blossomed due to the effort of numerous people. The concept is analogous to changing prediction of human population distribution from the landscape of hills and dales to determination of the landscape from a population distribution. In atomic systems, quantum quirkiness allows this switch, but dictates that it is only one slice in the tomography of the quantum state. The author shares his experience in the development from this slice, but hews close to the powerful concept of switching the landscape with the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  2. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  3. F. Herman, Rev. Mod. Phys. 30, 102 (1958).

    Article  CAS  Google Scholar 

  4. D. Bohm, D. Pines, Phys. Rev. 92, 609 (1953).

    Article  CAS  Google Scholar 

  5. M. Gell- Mann, K.A. Brueckner, Phys. Rev. 106, 364 (1957).

    Article  CAS  Google Scholar 

  6. J.B. Altepeter, E.R. Jeffrey, P.G. Kwiat, in Advances in Atomic, Molecular, and Optical Physics, P.R. Berman, C.C. Lin, Eds. (Elsevier, Amsterdam, The Netherlands, 2005), vol. 52, p. 105.

    Article  CAS  Google Scholar 

  7. H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, UK, 2010).

    Google Scholar 

  8. W. Kohn, L.J. Sham, Phys. Rev. 137, A1697 (1965).

    Article  Google Scholar 

  9. R.E. Langer, Phys. Rev. 51, 669 (1937).

    Article  Google Scholar 

  10. M. Thorpe, D. Thouless, Nucl. Phys. A 156, 225 (1970).

    Article  CAS  Google Scholar 

  11. J. Friedel, Lond. Edinb. Dublin Philos. Mag. 43, 153 (1952).

    Article  CAS  Google Scholar 

  12. L.-A. Wu, M.S. Sarandy, D.A. Lidar, L.J. Sham, Phys. Rev. A 74, 052335 (2006).

    Article  CAS  Google Scholar 

  13. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, UK, 2001).

    Google Scholar 

  14. L.-A. Wu, M.S. Sarandy, D.A. Lidar, Phys. Rev. Lett. 93, 250404 (2004).

    Article  CAS  Google Scholar 

  15. W. Kohn, A.D. Becke, R.G. Parr, J. Phys. Chem. 100, 12974 (1996).

    Article  CAS  Google Scholar 

  16. L.J. Sham, W. Kohn, Phys. Rev. 145, 561 (1966).

    Article  CAS  Google Scholar 

  17. E. Wigner, Phys. Rev. 40, 749 (1932).

    Article  CAS  Google Scholar 

  18. L.J. Sham, Phys. Rev. B 32, 3876 (1985).

    Article  CAS  Google Scholar 

  19. J.M. Luttinger, J.C. Ward, Phys. Rev. 118, 1417 (1960).

    Article  Google Scholar 

  20. R.P. Feynman, Phys. Rev. 76, 769 (1949).

    Article  Google Scholar 

  21. J.P. Perdew, M. Levy, Phys. Rev. Lett. 51, 1884 (1983).

    Article  CAS  Google Scholar 

  22. L.J. Sham, M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983).

    Article  Google Scholar 

  23. L.J. Sham, M. Schlüter, Phys. Rev. B 32, 3883 (1985).

    Article  CAS  Google Scholar 

  24. M. Lannoo, M. Schlüter, L.J. Sham, Phys. Rev. B 32, 3890 (1985).

    Article  CAS  Google Scholar 

  25. R.W. Godby, M. Schlüter, L.J. Sham, Phys. Rev. Lett. 56, 2415 (1986).

    Article  CAS  Google Scholar 

  26. R.W. Godby, M. Schlüter, L.J. Sham, Phys. Rev. B 35, 4170 (1987).

    Article  CAS  Google Scholar 

  27. R.W. Godby, M. Schlüter, L.J. Sham, Phys. Rev. B 36, 6497 (1987).

    Article  CAS  Google Scholar 

  28. J. Hubbard, Proc. R. Soc. Lond. A Math. Phys. Sci. 276, 238 (1963).

    Google Scholar 

  29. J. Hubbard, Proc. R. Soc Lond. A Math. Phys. Sci. 277, 237 (1964).

    Google Scholar 

  30. P.W. Anderson, Phys. Rev. 124, 41 (1961).

    Article  CAS  Google Scholar 

  31. M.M. Steiner, R.C. Albers, D.J. Scalapino, L.J. Sham, Phys. Rev. B 43, 1637 (1991).

    Article  CAS  Google Scholar 

  32. M.M. Steiner, R.C. Albers, L.J. Sham, Phys. Rev. B 45, 13272 (1992).

    Article  CAS  Google Scholar 

  33. M.M. Steiner, R.C. Albers, L.J. Sham, Phys. Rev. Lett. 72, 2923 (1994).

    Article  CAS  Google Scholar 

  34. K. Andres, J.E. Graebner, H.R. Ott, Phys. Rev. Lett. 35, 1779 (1975).

    Article  CAS  Google Scholar 

  35. A. Dommann, F. Hulliger, J. Less-Common Met. 141, 261 (1988).

    Article  CAS  Google Scholar 

  36. M.B. Brodsky, R.J. Trainor, A.J. Arko, H.V. Culbert, AIP Conf. Proc. 29, 317 (1976).

    Article  CAS  Google Scholar 

  37. G.R. Stewart, Z. Fisk, J.O. Willis, J.L. Smith, Phys. Rev. Lett. 52, 679 (1984).

    Article  CAS  Google Scholar 

  38. G.R. Stewart, Rev. Mod. Phys. 56, 755 (1984).

    Article  CAS  Google Scholar 

  39. J. F. Herbst, R.E. Watson, I. Lindgren, Phys. Rev. B 14, 3265 (1976).

    Article  Google Scholar 

  40. W. Ubachs, A. van Deursen, A. de Vroomen, A. Arko, Solid State Commun. 60, 7 (1986).

    Article  CAS  Google Scholar 

  41. B. Reihl, N. Mårtensson, D.E. Eastman, A.J. Arko, O. Vogt, Phys. Rev. B 26, 1842 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The following article is based on the Materials Theory Award presentation given by Lu J. Sham “for pioneering contributions to the quantum theory of molecules and solids, especially the Kohn-Sham formulation of density functional theory,” at the 2019 MRS Fall Meeting in Boston, Mass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sham, L.J. A quantum hindsight on density functional theory for computation of materials properties. MRS Bulletin 45, 669–674 (2020). https://doi.org/10.1557/mrs.2020.192

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.192

Navigation