Skip to main content

Advertisement

Log in

Interfacing metals and compounds for enhanced hydrogen evolution from water splitting

  • Nanomaterials for Electrochemical Water Splitting
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Hydrogen production from water electrolysis with renewable energy input has been the focus of tremendous attention, as hydrogen is widely advocated as a clean energy carrier. In order to realize large-scale hydrogen generation from water splitting, it is essential to develop competent and robust electrocatalysts that will substantially decrease the overpotential requirement and improve energy efficiency. Recent advances in electrocatalyst design reveal that interfacial engineering is an effective approach in tuning the adsorption-desorption abilities of key catalytic intermediates on active sites, accelerating electron transfer, and stabilizing the active sites for long-term operation. Consequently, a large number of hybrid electrocatalysts consisting of metal/compound interfaces have been demonstrated to exhibit superior performance for electrocatalytic hydrogen evolution from water. This article highlights examples of these hybrid electrocatalysts, including noble metal and non-noble metal candidates interfaced with a variety of compounds. Specific emphasis is placed on the synthetic methods, reaction mechanisms, and electrocatalytic activities, which are envisioned to inspire the design and development of further improved electrocatalysts for hydrogen evolution from water splitting on an industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. M. Dresselhaus, I. Thomas, Nature 414, 332 (2001).

    Google Scholar 

  2. S. Chu, A. Majumdar, Nature 488, 294 (2012).

  3. N. Linares, A.M. Silvestre-Albero, E. Serrano, J. Silvestre-Albero, J. Garcia- Martinez, Chem. Soc. Rev. 43, 7681 (2014).

    Google Scholar 

  4. C. Tang, H.F. Wang, Q. Zhang, Acc. Chem. Res. 51, 881 (2018).

    Google Scholar 

  5. Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev. 111, 3577 (2011).

    Google Scholar 

  6. J.A. Turner, Science 285, 687 (1999).

    Google Scholar 

  7. L. Han, S.J. Dong, E.K. Wang, Adv. Mater. 28, 9266 (2016).

    Google Scholar 

  8. J. Wang, F. Xu, H.Y. Jin, Y.Q. Chen, Y. Wang, Adv. Mater. 29, 1605838 (2017).

    Google Scholar 

  9. X.X. Zou, Y. Zhang, Chem. Soc. Rev. 44, 5148 (2015).

    Google Scholar 

  10. Y. Jiao, Y. Zheng, M.T. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 44, 2060 (2015).

    Google Scholar 

  11. J.H. Wang, W. Cui, Q. Liu, Z.C. Xing, A.M. Asiri, X.P. Sun, Adv. Mater. 28, 215 (2016).

    Google Scholar 

  12. Y.M. Shi, B. Zhang, Chem. Soc. Rev. 45, 1529 (2016).

    Google Scholar 

  13. I. Roger, M.A. Shipman, M.D. Symes, Nat. Rev. Chem. 1, 0003 (2017).

    Google Scholar 

  14. S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, ACS Catal. 6, 8069 (2016).

    Google Scholar 

  15. Y. Zheng, Y. Jiao, A. Vasileff, S.Z. Qiao, Angew. Chem. Int. Ed. Engl. 57, 7568 (2018).

    Google Scholar 

  16. R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A.P. Paulikas, V. Stamenkovic, N.M. Markovic, Science 334, 1256 (2011).

    Google Scholar 

  17. D. Strmcnik, P.P. Lopes, B. Genorio, V.R. Stamenkovic, N.M. Markovic, Nano Energy 29, 29 (2016).

    Google Scholar 

  18. Q. Shao, P.T. Wang, X.Q. Huang, Adv. Funct. Mater. 29, 1806419 (2019).

    Google Scholar 

  19. N. Dubouis, A. Grimaud, Chem. Sci. 10, 9165 (2019).

    Google Scholar 

  20. B. Ruqia, S.I. Choi, ChemSusChem 11, 2643 (2018).

    Google Scholar 

  21. J. Zhang, Q. Zhang, X. Feng, Adv. Mater. 1808167 (2019).

    Google Scholar 

  22. H. Li, C. Chen, D. Yan, Y. Wang, R. Chen, Y. Zou, S. Wang, J. Mater. Chem. A 7, 23432 (2019).

    Google Scholar 

  23. T. Kwon, M. Jun, J. Joo, K. Lee, J. Mater. Chem. A 7, 5090 (2019).

    Google Scholar 

  24. R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A.P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N.M. Markovic, Nat. Mater. 11, 550 (2012).

    Google Scholar 

  25. H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang, L. Chang, H. Zhao, Y. Gao, Z. Tang, Nat. Commun. 6, 6430 (2015).

    Google Scholar 

  26. L. Wang, Y. Zhu, Z. Zeng, C. Lin, M. Giroux, L. Jiang, Y. Han, J. Greeley, C. Wang, J. Jin, Nano Energy 31, 456 (2017).

    Google Scholar 

  27. F.J. Sarabia, P. Sebastián-Pascual, M.T. Koper, V. Climent, J.M. Feliu, ACS Appl. Mater. Interfaces 11, 613 (2018).

    Google Scholar 

  28. Y. Wang, L. Chen, X. Yu, Y. Wang, G. Zheng, Adv. Energy Mater. 7, 1601390 (2017).

    Google Scholar 

  29. M. Lao, K. Rui, G. Zhao, P. Cui, X. Zheng, S.X. Dou, W. Sun, Angew. Chem. Int. Ed. Engl. 58, 5432 (2019).

    Google Scholar 

  30. M. Basu, R. Nazir, P. Fageria, S. Pande, Sci. Rep. 6, 34738 (2016).

    Google Scholar 

  31. Q. Yu, Y. Luo, S. Qiu, Q. Li, Z. Cai, Z. Zhang, J. Liu, C. Sun, B. Liu, ACS Nano 13, 11874 (2019).

    Google Scholar 

  32. L.-N. Zhang, Z.-L. Lang, Y.-H. Wang, H.-Q. Tan, H.-Y. Zang, Z.-H. Kang, Y.-G. Li, Energy Environ. Sci. 12, 2569 (2019).

    Google Scholar 

  33. Y. Cheng, S. Lu, F. Liao, L. Liu, Y. Li, M. Shao, Adv. Funct. Mater. 27, 1700359 (2017).

    Google Scholar 

  34. S. Liu, M. Li, C. Wang, P. Jiang, L. Hu, Q. Chen, ACS Sustain. Chem. Eng. 6, 9137 (2018).

    Google Scholar 

  35. T. Gao, J. Yang, M. Nishijima, H.A. Miller, F. Vizza, H. Gu, H. Chen, Y. Hu, Z. Jiang, L. Wang, J. Electrochem. Soc. 165, F1147 (2018).

    Google Scholar 

  36. N. Danilovic, R. Subbaraman, D. Strmcnik, K.C. Chang, A. Paulikas, V. Stamenkovic, N.M. Markovic, Angew. Chem. Int. Ed. Engl. 51, 12495 (2012).

    Google Scholar 

  37. M. Chhetri, S. Sultan, C. Rao, Proc. Natl. Acad. Sci. U.S.A. 114, 8986 (2017).

    Google Scholar 

  38. Z. Weng, W. Liu, L.-C. Yin, R. Fang, M. Li, E.I. Altman, Q. Fan, F. Li, H.-M. Cheng, H. Wang, Nano Lett. 15, 7704 (2015).

    Google Scholar 

  39. M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan, M.-C. Lin, B. Zhang, Y. Hu, D.-Y. Wang, J. Yang, Nat. Commun. 5, 4695 (2014).

    Google Scholar 

  40. X. Liu, K. Ni, C. Niu, R. Guo, W. Xi, Z. Wang, J. Meng, J. Li, Y. Zhu, P. Wu, ACS Catal. 9, 2275 (2019).

    Google Scholar 

  41. D. Ji, L. Peng, J. Shen, M. Deng, Z. Mao, L. Tan, M. Wang, R. Xiang, J. Wang, S.S.A. Shah, Chem. Commun. 55, 3290 (2019).

    Google Scholar 

  42. B. You, N. Jiang, M. Sheng, M.W. Bhushan, Y. Sun, ACS Catal. 6, 714 (2016).

    Google Scholar 

  43. K. Xiong, Y. Gao, J. Chen, Y. Shen, H. Zhang, Chem. Commun. 56, 611 (2019).

    Google Scholar 

  44. F. Song, W. Li, J. Yang, G. Han, P. Liao, Y. Sun, Nat. Commun. 9, 4531 (2018).

    Google Scholar 

  45. Y.-Y. Ma, Z.-L. Lang, L.-K. Yan, Y.-H. Wang, H.-Q. Tan, K. Feng, Y.-J. Xia, J. Zhong, Y. Liu, Z.-H. Kang, Energy Environ. Sci. 11, 2114 (2018).

    Google Scholar 

  46. F. Song, W. Li, J. Yang, G. Han, T. Yan, X. Liu, Y. Rao, P. Liao, Z. Cao, Y. Sun, ACS Energy Lett. 4, 1594 (2019).

    Google Scholar 

  47. C.-Z. Yuan, S.-L. Zhong, Y.-F. Jiang, Z.K. Yang, Z.-W. Zhao, S.-J. Zhao, N. Jiang, A.-W. Xu, J. Mater. Chem. A 5, 10561 (2017).

    Google Scholar 

  48. H. Wang, S. Min, Q. Wang, D. Li, G. Casillas, C. Ma, Y. Li, Z. Liu, L.-J. Li, J. Yuan, ACS Nano 11, 4358 (2017).

    Google Scholar 

  49. X. Yan, L. Tian, M. He, X. Chen, Nano Lett. 15, 6015 (2015).

    Google Scholar 

  50. C. Zhu, A.L. Wang, W. Xiao, D. Chao, X. Zhang, N.H. Tiep, S. Chen, J. Kang, X. Wang, J. Ding, Adv. Mater. 30, 1705516 (2018).

    Google Scholar 

  51. Y. Liu, Q. Li, R. Si, G.D. Li, W. Li, D.P. Liu, D. Wang, L. Sun, Y. Zhang, X. Zou, Adv. Mater. 29, 1606200 (2017).

    Google Scholar 

  52. J.-X. Feng, J.-Q. Wu, Y.-X. Tong, G.-R. Li, J. Am. Chem. Soc. 140, 610 (2018).

    Google Scholar 

  53. Y. Sun, C. Huang, J. Shen, Y. Zhong, J. Ning, Y. Hu, J. Colloid Interface Sci. 558, 1 (2019).

    Google Scholar 

Download references

Acknowledgments

Y.S. acknowledges the financial support of the Herman Frasch Foundation (820-HF17), the National Science Foundation (CHE1914546), and the University of Cincinnati.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Hong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, JH., Sun, Y. Interfacing metals and compounds for enhanced hydrogen evolution from water splitting. MRS Bulletin 45, 548–554 (2020). https://doi.org/10.1557/mrs.2020.169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.169

Navigation