Skip to main content

Advertisement

Log in

Porphyrin and macrocycle derivatives for electrochemical water splitting

  • Nanomaterials for Electrochemical Water Splitting
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Hydrogen is a promising alternative fuel for efficient energy production and storage, with water splitting considered one of the cleanest, environmentally friendly, and sustainable approaches to generate hydrogen. Electrochemically catalyzed water splitting plays an important role in energy conversion for the development of hydrogen-based energy sources. Porphyrin and macrocycle derivatives are versatile and can electrochemically catalyze water splitting efficiently. Because of the significance of molecule activation of electrochemical water splitting, this article covers recent progress in hydrogen evolution and oxygen evolution reactions catalyzed by porphyrin and macrocycle derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Q. Zuo, T. Liu, C. Chen, Y. Ji, X. Gong, Y. Mai, Y. Zhou, Angew. Chem. Int. Ed. Engl. 58, 10198 (2019).

    Google Scholar 

  2. Y. Liu, G. Zhou, Z. Zhang, H. Lei, Z. Yao, J. Li, J. Lin, R. Cao, Chem. Sci. 11, 87 (2020).

    Google Scholar 

  3. J. Al Cheikh, A. Villagra, A. Ranjbari, A. Pradon, M. Antuch, D. Dragoe, P. Millet, L. Assaud, Appl. Catal. B 250, 292 (2019).

    Google Scholar 

  4. Z. Xin, Y.-R. Wang, Y. Chen, W.-L. Li, L.-Z. Dong, Y.-Q. Lan, Nano Energy 67, 104233 (2020).

    Google Scholar 

  5. H. Yang, J. Bright, S. Kasani, P. Zheng, T. Musho, B. Chen, L. Huang, N. Wu, Nano Res. 12, 643 (2019).

    Google Scholar 

  6. Y. Liu, L. Wang, H. Feng, X. Ren, J. Ji, F. Bai, H. Fan, Nano Lett. 19, 2614 (2019).

    Google Scholar 

  7. L. Wang, H. Fan, F. Bai, MRS Bull. 45 (1), 49 (2020).

    Google Scholar 

  8. G. Xu, H. Lei, G. Zhou, C. Zhang, L. Xie, W. Zhang, R. Cao, Chem. Commun. 55, 12647 (2019).

    Google Scholar 

  9. S. Tian, S. Chen, X. Ren, R. Cao, H. Hu, F. Bai, Nano Res. 12, 3109 (2019).

    Google Scholar 

  10. X.L. Li, H.T. Lei, X.J. Guo, X.L. Zhao, S.P. Ding, X.Q. Gao, W. Zhang, R. Cao, ChemSusChem 10, 4632 (2017).

    Google Scholar 

  11. J.V.S. Krishna, N.V. Krishna, S.K. Singh, P.K. Shaw, V.M. Dhavale, A.K. Vardhaman, L. Giribabu, Eur. J. Inorg. Chem. 2018, 1549 (2018).

    Google Scholar 

  12. Q. Li, N. Zhao, F. Bai, MRS Bull. 44, 172 (2019).

    Google Scholar 

  13. N. Zhang, L. Wang, H. Wang, R. Cao, J. Wang, F. Bai, H. Fan, Nano Lett. 18, 560 (2018).

    Google Scholar 

  14. N. Wang, H. Lei, Z. Zhang, J. Li, W. Zhang, R. Cao, Chem. Sci. 10, 2308 (2019).

    Google Scholar 

  15. J. Jiang, K.L. Materna, S. Hedström, K.R. Yang, R.H. Crabtree, V.S. Batista, G.W. Brudvig, Angew. Chem. Int. Ed. Engl. 56, 9111 (2017).

    Google Scholar 

  16. Y. Han, H. Fang, H. Jing, H. Sun, H. Lei, W. Lai, R. Cao, Angew. Chem. Int. Ed. Engl. 55, 5457 (2016).

    Google Scholar 

  17. H. Lei, X. Li, J. Meng, H. Zheng, W. Zhang, R. Cao, ACS Catal. 9, 4320 (2019).

    Google Scholar 

  18. H. Lei, H. Fang, Y. Han, W. Lai, X. Fu, R. Cao, ACS Catal. 5, 5145 (2015).

    Google Scholar 

  19. I.G. Denisov, T.M. Makris, S.G. Sligar, I. Schlichting, Chem. Rev. 105, 2253 (2005).

    Google Scholar 

  20. L. Xu, H. Lei, Z. Zhang, Z. Yao, J. Li, Z. Yu, R. Cao, Phys. Chem. Chem. Phys. 19, 9755 (2017).

    Google Scholar 

  21. H. Sun, Y. Han, H. Lei, M. Chen, R. Cao, Chem. Commun. 53, 6195 (2017).

    Google Scholar 

  22. A.N. Marianov, Y. Jiang, ACS Sustain. Chem. Eng. 7, 3838 (2019).

    Google Scholar 

  23. W. Laure, K. De Bruycker, P. Espeel, D. Fournier, P. Woisel, F.E. Du Prez, J. Lyskawa, Langmuir 34, 2397 (2018).

    Google Scholar 

  24. J. Lyskawa, D. Bélanger, Chem. Mater. 18, 4755 (2006).

    Google Scholar 

  25. X.L. Li, H.T. Lei, J.Y. Liu, X.L. Zhao, S.P. Ding, Z.Y. Zhang, X.X. Tao, W. Zhang, W.C. Wang, X.H. Zheng, R. Cao, Angew. Chem. Int. Ed. Engl. 57, 15070 (2018).

    Google Scholar 

  26. H. Li, X.L. Li, H.T. Lei, G.J. Zhou, W. Zhang, R. Cao, ChemSusChem 12, 801 (2019).

    Google Scholar 

  27. S. Seo, K. Lee, M. Min, Y. Cho, M. Kim, H. Lee, Nanoscale 9, 3969 (2017).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21501045, 21771055, U1604139, and 21422102), Plan for Scientific Innovation Talent of Henan Province (No. 174200510019), and Program for Changjiang Scholars and Innovative Research Team in University (No. PCS IRT1126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Bao, Y. & Bai, F. Porphyrin and macrocycle derivatives for electrochemical water splitting. MRS Bulletin 45, 569–573 (2020). https://doi.org/10.1557/mrs.2020.168

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.168

Navigation