Skip to main content

Advertisement

Log in

Electrocatalytic water splitting using organic polymer materials-based hybrid catalysts

  • Nanomaterials for Electrochemical Water Splitting
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Sustainable and green energy sources are in high demand to meet the current human energy needs and environmental requirements. Hydrogen energy, with the highest energy density and zero carbon emission, is considered a potential solution. Hydrogen is primarily produced by splitting water. Rationally designed electrocatalysts are required to promote the cathodic hydrogen evolution reaction (HER) and the anodic oxygen evolution reaction (OER). Organic polymer matrices provide new opportunities for electrocatalytic water splitting due to their special physical and chemical characteristics and thermal stability. This article explains the role of organic polymers in electrocatalytic water decomposition from three aspects: ion-conductive polymers, conjugated conductive polymers, and carbon materials derived from organic polymers. We hope that this article will provide more rational ideas and promote the design of organic polymers for water-splitting electrocatalysis, and furnish more technical insights for the future of water electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Nat. Mater. 16, 57 (2017).

    Google Scholar 

  2. Y. Yan, B. Xia, Z. Xu, X. Wang, ACS Catal. 4, 1693 (2014).

    Google Scholar 

  3. X. Yin, Y. Yan, M. Miao, K. Zhan, P. Li, J. Yang, B. Zhao, B.Y. Xia, Chem. Eur. J. 24, 556 (2018).

    Google Scholar 

  4. W.-F. Chen, J.T. Muckerman, E. Fujita, Chem. Commun. 49, 8896 (2013).

    Google Scholar 

  5. J. Jiang, Q. Liu, C. Zeng, L. Ai, J. Mater. Chem. A 5, 16929 (2017).

    Google Scholar 

  6. B. Xia, Y. Yan, X. Wang, X.W. Lou, Mater. Horiz. 1, 379 (2014).

    Google Scholar 

  7. X. Zou, Y. Zhang, Chem. Soc. Rev. 44, 5148 (2015).

    Google Scholar 

  8. J. Kibsgaard, T.F. Jaramillo, F. Besenbacher, Nat. Chem. 6, 248 (2014).

    Google Scholar 

  9. X. Gao, Y. Zhou, Y. Tan, S. Liu, Z. Cheng, Z. Shen, Appl. Surf. Sci. 492, 8 (2019).

    Google Scholar 

  10. Y. Cheng, J. Dai, Y. Song, Y. Zhang, ACS Appl. Energy Mater. 2, 6851 (2019).

    Google Scholar 

  11. Y. Yan, T. He, B. Zhao, K. Qi, H. Liu, B.Y. Xia, J. Mater. Chem. A 6, 15905 (2018).

    Google Scholar 

  12. B.Y. Guan, X.Y. Yu, H.B. Wu, X.W.D. Lou, Adv. Mater. 29, 1703614 (2017).

    Google Scholar 

  13. L.A. Stern, P. Mocny, H. Vrubel, T. Bilgic, H.A. Klok, X. Hu, ACS Appl. Mater. Interfaces 10, 6253 (2018).

    Google Scholar 

  14. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, Science 334, 75 (2011).

    Google Scholar 

  15. M. Wu, X. Xiao, N. Vukmirovic, S. Xun, P.K. Das, X. Song, P. Olalde-Velasco, D. Wang, A.Z. Weber, L.-W. Wang, V.S. Battaglia, W. Yang, G. Liu, J. Am. Chem. Soc. 135, 12048 (2013).

    Google Scholar 

  16. S.-J. Park, H. Zhao, G. Ai, C. Wang, X. Song, N. Yuca, V.S. Battaglia, W. Yang, G. Liu, J. Am. Chem. Soc. 137, 2565 (2015).

    Google Scholar 

  17. K.D. Kreuer, J. Membr. Sci. 185, 29 (2001).

    Google Scholar 

  18. F. Zhang, M. Yang, S. Zhang, P. Fang, Polymers 11, 1268 (2019).

    Google Scholar 

  19. S. Günes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107, 1324 (2007).

    Google Scholar 

  20. J. Heinze, B.A. Frontana-Uribe, S. Ludwigs, Chem. Rev. 110, 4724 (2010).

    Google Scholar 

  21. D. Mullangi, V. Dhavale, S. Shalini, S. Nandi, S. Collins, T. Woo, S. Kurungot, R. Vaidhyanathan, Adv. Energy Mater. 6, 1600110 (2016).

    Google Scholar 

  22. H.B. Aiyappa, J. Thote, D.B. Shinde, R. Banerjee, S. Kurungot, Chem. Mater. 28, 4375 (2016).

    Google Scholar 

  23. Y.L. Wong, J.M. Tobin, Z. Xu, F. Vilela, J. Mater. Chem. A 4, 18677 (2016).

    Google Scholar 

  24. P. Peng, Z. Zhou, J. Guo, Z. Xiang, ACS Energy Lett. 2, 1308 (2017).

    Google Scholar 

  25. K. Venkata Rao, R. Haldar, T.K. Maji, S.J. George, Phys. Chem. Chem. Phys. 18, 156 (2016).

    Google Scholar 

  26. Y. Xu, S. Jin, H. Xu, A. Nagai, D. Jiang, Chem. Soc. Rev. 42, 8012 (2013).

    Google Scholar 

  27. W. Wang, M. Zhou, D. Yuan, J. Mater. Chem. A 5, 1334 (2017).

    Google Scholar 

  28. S.A. Bhat, C. Das, T.K. Maji, J. Mater. Chem. A 6, 19834 (2018).

    Google Scholar 

  29. R. Dong, M. Pfeffermann, H. Liang, Z. Zheng, X. Zhu, J. Zhang, X. Feng, Angew. Chem. Int. Ed. Engl. 54, 12058 (2015).

    Google Scholar 

  30. R. Gangopadhyay, A. De, Chem. Mater. 12, 2064 (2000).

    Google Scholar 

  31. N.K. Guimard, N. Gomez, C.E. Schmidt, Prog. Polym. Sci. 32, 876 (2007).

    Google Scholar 

  32. J.M. Ko, H.W. Rhee, S.-M. Park, C.Y. Kim, J. Electrochem. Soc. 137, 905 (1990).

    Google Scholar 

  33. D.A. Dalla Corte, C. Torres, P.d.S. Correa, E.S. Rieder, C.d.F. Malfatti, Int. J. Hydrogen Energy 37, 3025 (2012).

    Google Scholar 

  34. J.G. Ibanez, M.E. Rincón, S. Gutierrez-Granados, M.h. Chahma, O.A. Jaramillo-Quintero, B.A. Frontana-Uribe, Chem. Rev. 118, 4731 (2018).

    Google Scholar 

  35. G. Liao, Q. Li, Z. Xu, Prog. Org. Coat. 126, 35 (2019).

    Google Scholar 

  36. Y.X. Lin, W.J. Feng, J.J. Zhang, Z.H. Xue, T.J. Zhao, H. Su, S.I. Hirano, X.H. Li, J.S. Chen, Angew. Chem. Int. Ed. Engl. 57, 12563 (2018).

    Google Scholar 

  37. A. Antar, Y. Naimi, D. Takky, IOP Conf. Ser. Earth Environ. Sci. 161, 012027 (2018).

    Google Scholar 

  38. D.V. Morales, C.N. Astudillo, Y. Lattach, B.F. Urbano, E. Pereira, B.L. Rivas, J. Arnaud, J.-L. Putaux, S. Sirach, S. Cobo, J.-C. Moutet, M.-N. Collomb, J. Fortage, Catal. Sci. Technol. 8, 4030 (2018).

    Google Scholar 

  39. M. Antonietti, M. Oschatz, Adv. Mater. 30, e1706836 (2018).

    Google Scholar 

  40. S. Han, Y. Feng, F. Zhang, C. Yang, Z. Yao, W. Zhao, F. Qiu, L. Yang, Y. Yao, X. Zhuang, X. Feng, Adv. Funct. Mater. 25, 3899 (2015).

    Google Scholar 

  41. S. Hua, D. Qu, L. An, G. Xi, G. Chen, F. Li, Z. Zhou, Z. Sun, Chin. J. Catal. 38, 1028 (2017).

    Google Scholar 

  42. X.H. Yan, P. Prabhu, H. Xu, Z. Meng, T. Xue, J.M. Lee, Small Methods 4, 1900575 (2019).

    Google Scholar 

  43. P. Thirukumaran, R. Atchudan, R. Balasubramanian, A.S. Parveen, S.-C. Kim, Int. J. Hydrogen Energy 43, 13266 (2018).

    Google Scholar 

  44. J.Q. Chi, W.K. Gao, J.H. Lin, B. Dong, K.L. Yan, J.F. Qin, Z.Z. Liu, Y.M. Chai, C.G. Liu, J. Colloid Interface Sci. 513, 151 (2018).

    Google Scholar 

  45. J. Yang, X. Wang, B. Li, L. Ma, L. Shi, Y. Xiong, H. Xu, Adv. Funct. Mater. 27, 1606497 (2017).

    Google Scholar 

  46. H. Wang, C. Tang, Q. Zhang. Adv. Funct. Mater. 28, 1803329 (2018).

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Beijing Municipal High Level Innovative Team Building Program (No. IDHT20180504), Beijing Outstanding Young Scientists Program (BJJWZYJH01201910005017), Beijing Municipal Science and Natural Science Fund Project (No. KM201910005016), the National Natural Science Foundation of China (No. 21805004, 21671011, 21872001, and 51801006), Beijing Natural Science Foundation (No. KZ201710005002 and 2192005), China Postdoctoral Science Foundation (No. 2018M641133), Beijing Postdoctoral Research Foundation (No. 2018-ZZ-021), and Chaoyang District Postdoctoral Research Foundation (No. 2018-ZZ-026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, L., Sun, L., An, L. et al. Electrocatalytic water splitting using organic polymer materials-based hybrid catalysts. MRS Bulletin 45, 562–568 (2020). https://doi.org/10.1557/mrs.2020.167

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.167

Navigation