Skip to main content

Advertisement

Log in

Functionally graded nanocomposite materials for catalysis: From hard coatings to energy applications

  • Nanomaterials for Electrochemical Water Splitting
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Functionally graded nanocomposite materials (FGNMs) have been known since the 1980s, although nanocomposite materials date back to the space race era of the 1960s. FGNMs are defined as materials in which the chemical and structural composition changes over their entire volume. Today, due to our current understanding, technology, and control over the nanostructure of materials, we can tune these properties at the nanoscale. Although FGNM applications have mostly focused on protective coatings, they have performed well in catalysis and hydrogen production applications. In this article, FGNMs are presented in a new light beyond their well-established applicability as protective coatings. This article focuses on the synergistic potential among mechanical/tribological properties and competitive catalytic performance, with special emphasis on energy and remediation applications. Also, ways by which the rational design and tailoring of catalytic properties can be achieved by means of FGNMs are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. P.M. Ajayan, L.S. Schadler, P.V. Braun, Eds., Nanocomposite Science and Technology (Wiley, Weinheim, Germany, 2003), https://onlinelibrary.wiley.com/doi/book/10.1002/3527602127.

    Google Scholar 

  2. M. Koizumi, M. Niino, MRS Bull. 20, 19 (1995).

    Google Scholar 

  3. M. Koizumi, Compos. B Eng. 28, 1 (1997).

    Google Scholar 

  4. W.A. Kaysser, B. Ilschner, MRS Bull. 20, 22 (1995).

    Google Scholar 

  5. I. Shiota, I.A. Nishida, XVI ICT '97 Proc. ICT'97. 16th Int. Conf. Thermoelect. (Cat. N0.97TH8291), pp. 364–370, http://ieeexplore.ieee.org/document/667154/.

  6. Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Eds., Functionally Graded Materials, Materials Technology Series (Springer, Boston, 1999), vol. 5, http://link.springer.com/10.1007/978-1-4615-5301-4.

  7. A.L. Tomás-García, J.O. Jensen, N.J. Bjerrum, Q. Li, Electrochim. Acta 137, 639 (2014).

    Google Scholar 

  8. Y.N. Regmi, G.R. Waetzig, K.D. Duffee, S.M. Schmuecker, J.M. Thode, B.M. Leonard, J. Mater. Chem. A 3, 10085 (2015).

    Google Scholar 

  9. S. Meyer, A.V. Nikiforov, I.M. Petrushina, K. Köhler, E. Christensen, J.O. Jensen, N.J. Bjerrum, Int. J. Hydrogen Energy 40, 2905 (2015).

    Google Scholar 

  10. X. Zou, Y. Zhang, Chem. Soc. Rev. 44, 5148 (2015).

    Google Scholar 

  11. R.B. Levy, M. Boudart, Science 181, 547 (1973).

    Google Scholar 

  12. J.E. Houston, G.E. Laramore, R.L. Park, Science 185, 258 (1974).

    Google Scholar 

  13. Z. Liu, M.A. Meyers, Z. Zhang, R.O. Ritchie, Prog. Mater. Sci. 88, 467 (2017).

    Google Scholar 

  14. L. Yate, L. Emerson Coy, G. Wang, M. Beltran, E. Diaz-Barriga, E.M. Saucedo, M.A. Ceniceros, K. Zaŀceski, I. Llarena, M. Moller, R.F. Ziolo, RSC Adv. 4, 61355 (2014).

    Google Scholar 

  15. L. Yate, L.E. Coy, D. Gregurec, W. Aperador, S.E. Moya, G. Wang, ACS Appl. Mater. Interfaces 7, 6351 (2015).

    Google Scholar 

  16. Y. Nabil, S. Cavaliere, I.A. Harkness, J.D.B. Sharman, D.J. Jones, J. Rozière, J. Power Sources 363, 20 (2017).

    Google Scholar 

  17. “Hydrogen on the Rise,” Nat. Energy 1, 16127 (2016).

  18. B.M. Tackett, Y.C. Kimmel, J.G. Chen, Int. J. Hydrogen Energy 41, 5948 (2016).

    Google Scholar 

  19. E. Coy, L. Yate, D.P. Valencia, W. Aperador, K. Siuzdak, P. Torruella, E. Azanza, S. Estrade, I. Iatsunskyi, F. Peiro, X. Zhang, J. Tejada, R.F. Ziolo, ACS Appl. Mater. Interfaces 9, 30872 (2017).

    Google Scholar 

  20. L. Yate, L.E. Coy, W. Aperador, Sci. Rep. 7, 3080 (2017).

    Google Scholar 

  21. D.P. Valencia, L. Yate, W. Aperador, Y. Li, E. Coy, J. Phys. Chem. C 122, 25433 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emerson Coy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coy, E. Functionally graded nanocomposite materials for catalysis: From hard coatings to energy applications. MRS Bulletin 45, 574–578 (2020). https://doi.org/10.1557/mrs.2020.164

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.164

Navigation