Skip to main content

Advertisement

Log in

Photon recycling in halide perovskite solar cells for higher efficiencies

  • Halide Perovskite Opto- and Nanoelectronic Materials and Devices
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The efficiency of halide perovskite solar cells has progressed rapidly through a series of major breakthroughs. Currently, a certified efficiency of 25.2% has been achieved for a solar cell using a polycrystalline thin film. This is the result of having reached 75% of the Shockley–Queisser limit for single-junction solar cells. However, for further improvements, new breakthrough technologies are required. This article reviews the impact of previous breakthrough technologies on the efficiency of halide perovskite solar cells, based on certified efficiencies. We clarify the current status of halide perovskite solar cells and introduce photon recycling as the next technological innovation for higher efficiencies. Photon recycling keeps the photon concentration inside the light-harvesting layer high, and consequently, leads to open-circuit voltages close to the theoretical value. Although photon recycling has not yet been implemented in real halide perovskite solar cells, three key technologies for implementing it are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart (2019).

  2. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, A.W. Ho-Baillie, Prog. Photovolt. Res. Appl. 28, 3 (2019).

    Google Scholar 

  3. M.A. Green, Prog. Photovolt. Res. Appl. 20, 472 (2012).

    Google Scholar 

  4. J.-F. Guillemoles, T. Kirchartz, D. Cahen, U. Rau, Nat. Photonics 13, 501 (2019).

    Google Scholar 

  5. J.H. Noh, S.I. Seok, MRS Bull. 40, 648 (2015).

    Google Scholar 

  6. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Nature 499, 316 (2013).

    Google Scholar 

  7. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Nat. Mater. 13, 897 (2014).

    Google Scholar 

  8. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Nature 517, 476 (2015).

    Google Scholar 

  9. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Science 348, 1234 (2015).

    Google Scholar 

  10. D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S.M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, Nat. Energy 1, 1 (2016).

    Google Scholar 

  11. W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, Science 356, 1376 (2017).

    Google Scholar 

  12. C. Ran, J. Xu, W. Gao, C. Huang, S. Dou, Chem. Soc. Rev. 47, 4581 (2018).

    Google Scholar 

  13. H. Yu, F. Wang, F. Xie, W. Li, J. Chen, N. Zhao, Adv. Funct. Mater. 24, 7102 (2014).

    Google Scholar 

  14. E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin, T.-Y. Yang, J.H. Noh, J. Seo, Nature 567, 511 (2019).

    Google Scholar 

  15. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 13, 460 (2019).

    Google Scholar 

  16. M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W.Y. Ho-Baillie, Prog. Photovolt. 27, 3 (2019).

    Google Scholar 

  17. M.A. Green, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W. Ho-Baillie, Prog. Photovolt. Res. Appl. 27, 565 (2019).

    Google Scholar 

  18. V. Ganapati, M.A. Steiner, E. Yablonovitch, IEEE J. Photovolt. 6, 801 (2016).

    Google Scholar 

  19. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, C. Ballif, J. Phys. Chem. Lett. 6, 66 (2014).

    Google Scholar 

  20. L.M. Pazos-Outón, M. Szumilo, R. Lamboll, J.M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H.J. Beeson, M. Vrućinić, M. Alsari, H.J. Snaith, Science 351, 1430 (2016).

    Google Scholar 

  21. I. Dursun, Y. Zheng, T. Guo, M. De Bastiani, B. Turedi, L. Sinatra, M.A. Haque, B. Sun, A.A. Zhumekenov, M.I. Saidaminov, ACS Energy Lett. 3, 1492 (2018).

    Google Scholar 

  22. Y. Fang, H. Wei, Q. Dong, J. Huang, Nat. Commun. 8, 14417 (2017).

    Google Scholar 

  23. Z. Gan, X. Wen, W. Chen, C. Zhou, S. Yang, G. Cao, K.P. Ghiggino, H. Zhang, B. Jia, Adv. Energy Mater. 9, 1900185 (2019).

    Google Scholar 

  24. T. Kirchartz, F. Staub, U. Rau, ACS Energy Lett. 1, 731 (2016).

    Google Scholar 

  25. J.M. Richter, M. Abdi-Jalebi, A. Sadhanala, M. Tabachnyk, J.P. Rivett, L.M. Pazos-Outón, K.C. Gödel, M. Price, F. Deschler, R.H. Friend, Nat. Commun. 7, 1 (2016).

    Google Scholar 

  26. R. Brenes, M. Laitz, J. Jean, D.W. deQuilettes, V. Bulović, Phys. Rev. Appl. 12, 014017 (2019).

    Google Scholar 

  27. T. Goudon, V. Miljanovic, C. Schmeiser, SIAM J. Appl. Math. 67, 1183 (2007).

    Google Scholar 

  28. J.M. Ball, A. Petrozza, Nat. Energy 1, 1 (2016).

    Google Scholar 

  29. A.D. Wright, C. Verdi, R.L. Milot, G.E. Eperon, M.A. Pérez-Osorio, H.J. Snaith, F. Giustino, M.B. Johnston, L.M. Herz, Nat. Commun. 7, 1 (2016).

    Google Scholar 

  30. A. Alnuaimi, I. Almansouri, A. Nayfeh, AIP Adv. 6, 115012 (2016).

    Google Scholar 

  31. L.M. Pazos-Outón, T.P. Xiao, E. Yablonovitch, J. Phys. Chem. Lett. 9, 1703 (2018).

    Google Scholar 

  32. S.E. Braslavsky, Pure Appl. Chem. 79, 293 (2007).

    Google Scholar 

  33. S.-T. Ha, C. Shen, J. Zhang, Q. Xiong, Nat. Photonics 10, 115 (2016).

    Google Scholar 

  34. M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe, J.M. Richter, M. Alsari, E.P. Booker, E.M. Hutter, A.J. Pearson, Nature 555, 497 (2018).

    Google Scholar 

  35. I.L. Braly, D.W. deQuilettes, L.M. Pazos-Outón, S. Burke, M.E. Ziffer, D.S. Ginger, H.W. Hillhouse, Nat. Photonics 12, 355 (2018).

    Google Scholar 

  36. S.D. Stranks, R.L. Hoye, D. Di, R.H. Friend, F. Deschler, Adv. Mater. 31, 1803336 (2019).

    Google Scholar 

  37. T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Nat. Rev. Mater. 1, 1 (2016).

    Google Scholar 

  38. Y. Jestin, Down-Shifting of the Incident Light for Photovoltaic Applications, in Comprehensive Renewable Energy (Elsevier, Oxford, UK, 2012).

    Google Scholar 

  39. X. Correig, J. Calderer, E. Blasco, R. Alcubilla, Solid State Electron. 33, 477 (1990).

    Google Scholar 

  40. K. Lark-Horovitz, V.A. Johnson, Solid State Phys. B (Academic Press, New York, 1959).

    Google Scholar 

  41. T. Kirchartz, L. Krückemeier, E.L. Unger, APL Mater. 6, 100702 (2018).

    Google Scholar 

  42. Y. Yang, Y. Yan, M. Yang, S. Choi, K. Zhu, J.M. Luther, M.C. Beard, Nat. Commun. 6, 7961 (2015).

    Google Scholar 

  43. Y. Yang, M. Yang, D.T. Moore, Y. Yan, E.M. Miller, K. Zhu, M.C. Beard, Nat. Energy 2, 1 (2017).

    Google Scholar 

  44. J. Wang, W. Fu, S. Jariwala, I. Sinha, A.K.-Y. Jen, D.S. Ginger, ACS Energy Lett. 4, 222 (2018).

    Google Scholar 

  45. R. Cohen, V. Lyahovitskaya, E. Poles, A. Liu, Y. Rosenwaks, Appl. Phys. Lett. 73, 1400 (1998).

    Google Scholar 

  46. W.J. Royea, A. Juang, N.S. Lewis, Appl. Phys. Lett. 77, 1988 (2000).

    Google Scholar 

  47. X.-H. Zhao, M.J. DiNezza, S. Liu, C.M. Campbell, Y. Zhao, Y.-H. Zhang, Appl. Phys. Lett. 105, 252101 (2014).

    Google Scholar 

  48. E.M. Hutter, J.J. Hofman, M.L. Petrus, M. Moes, R.D. Abellón, P. Docampo, T.J. Savenije, Adv. Energy Mater. 7, 1602349 (2017).

    Google Scholar 

  49. D. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Nat. Rev. Mater. 5, 44 (2020).

    Google Scholar 

  50. M. Abdi-Jalebi, Z. Andaji-Garmaroudi, A.J. Pearson, G. Divitini, S. Cacovich, B. Philippe, H. Rensmo, C. Ducati, R.H. Friend, S.D. Stranks, ACS Energy Lett. 3, 2671 (2018).

    Google Scholar 

  51. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.-P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, Science 354, 206 (2016).

    Google Scholar 

  52. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Adv. Mater. 26, 6503 (2014).

    Google Scholar 

  53. C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Nat. Commun. 6, 1 (2015).

    Google Scholar 

  54. S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou, X. Xiao, X.C. Zeng, J. Huang, J. Am. Chem. Soc. 141, 5781 (2019).

    Google Scholar 

  55. X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X.C. Zeng, J. Huang Nat. Energy 2, 1 (2017).

    Google Scholar 

  56. H. Tan, A. Jain, O. Voznyy, X. Lan, F.P.G. De Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, Science 355, 722 (2017).

    Google Scholar 

  57. B. Li, Y. Chen, Z. Liang, D. Gao, W. Huang, RSC Adv. 5, 94290 (2015).

    Google Scholar 

  58. J.R. Albani, Structure and Dynamics of Macromolecules: Absorption and Fluorescence Studies (Elsevier, Amsterdam, The Netherlands, 2011).

    Google Scholar 

  59. B. Ullrich, A.K. Singh, P. Barik, H. Xi, M. Bhowmick, Opt. Lett. 40, 2580 (2015).

    Google Scholar 

  60. Y. Guo, O. Yaffe, TD. Hull, J.S. Owen, D.R. Reichman, L.E. Brus, Nat. Commun. 10, 1 (2019).

    Google Scholar 

  61. P. Umari, E. Mosconi, F. De Angelis, J. Phys. Chem. Lett. 9, 620 (2018).

    Google Scholar 

  62. D.H. Fabini, C.C. Stoumpos, G. Laurita, A. Kaltzoglou, A.G. Kontos, P. Falaras, M.G. Kanatzidis, R. Seshadri, Angew. Chem. Int. Ed. Engl. 55, 15392 (2016).

    Google Scholar 

  63. K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G.E. Eperon, J.T.-W. Wang, T. Stergiopoulos, S.D. Stranks, H.J. Snaith, Energy Environ. Sci. 9, 962 (2016).

    Google Scholar 

  64. J.-F. Wang, X.-N. Fu, J.-T. Wang, Chin. Phys. B 26, 106301 (2017).

    Google Scholar 

  65. H.-H. Fang, S. Adjokatse, S. Shao, J. Even, M.A. Loi, Nat. Commun. 9, 243 (2018).

    Google Scholar 

  66. A.D. Wright, C. Verdi, R.L. Milot, G.E. Eperon, M.A. Pérez-Osorio, H.J Snaith, F. Giustino, M.B. Johnston, L.M. Herz, Nat. Commun. 7, 11755 (2016).

    Google Scholar 

  67. J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T.W. Kee, F. Huang, Nat. Commun. 8, 14120 (2017).

    Google Scholar 

  68. M. Sendner, P.K. Nayak, D.A. Egger, S. Beck, C. Müller, B. Epding, W. Kowalsky, L. Kronik, H.J. Snaith, A. Pucci, Mater. Horiz. 3, 613 (2016).

    Google Scholar 

  69. M.A. Perez-Osorio, A. Champagne, M. Zacharias, G.-M. Rignanese, F. Giustino, J. Phys. Chem. C 121, 18459 (2017).

    Google Scholar 

  70. S. Govinda, B.P. Kore, M. Bokdam, P. Mahale, A. Kumar, S. Pal, B. Bhattacharyya, J. Lahnsteiner, G. Kresse, C. Franchini, J. Phys. Chem. Lett. 8, 4113 (2017).

    Google Scholar 

  71. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.-W. Wang, S.D. Stranks, H.J. Snaith, R.J. Nicholas, Nat. Phys. 11, 582 (2015).

    Google Scholar 

  72. Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, L. Huang, Science 356, 59 (2017).

    Google Scholar 

  73. A. Filippetti, A. Mattoni, C. Caddeo, M.I. Saba, P. Delugas, Phys. Chem. Chem. Phys. 18, 15352 (2016).

    Google Scholar 

  74. M. Nagai, T. Tomioka, M. Ashida, M. Hoyano, R. Akashi, Y. Yamada, T. Aharen, Y. Kanemitsu, Phys. Rev. Lett. 121, 145506 (2018).

    Google Scholar 

  75. Y. Yang, D.P. Ostrowski, R.M. France, K. Zhu, J. van de Lagemaat, J.M. Luther, M.C. Beard, Nat. Photonics 10, 53 (2016).

    Google Scholar 

  76. K.W. Wu, A. Bera, C. Ma, Y.M. Du, Y. Yang, L. Li, T. Wu, Phys. Chem. Chem. Phys. 16, 22476 (2014).

    Google Scholar 

  77. P. Azarhoosh, S. McKechnie, J.M. Frost, A. Walsh, M. Van Schilfgaarde, APL Mater. 4, 091501 (2016).

    Google Scholar 

  78. C. Motta, F. El-Mellouhi, S. Kais, N. Tabet, F. Alharbi, S. Sanvito, Nat. Commun. 6, 7026 (2015).

    Google Scholar 

  79. E.M. Hutter, M.C. Gélvez-Rueda, A. Osherov, V. Bulović, FC. Grozema, S.D. Stranks, T.J. Savenije, Nat. Mater. 16, 115 (2017).

    Google Scholar 

  80. B. Galvani, D. Suchet, A. Delamarre, M. Bescond, F.V. Michelini, M. Lannoo, J.-F. Guillemoles, N. Cavassilas, ACS Omega 4, 21487 (2019).

    Google Scholar 

  81. M.C. Brennan, J.E. Herr, T.S. Nguyen-Beck, J. Zinna, S. Draguta, S. Rouvimov, J. Parkhill, M. Kuno, J. Am. Chem. Soc. 139, 12201 (2017).

    Google Scholar 

  82. F. Behrouznejad, S. Shahbazi, N. Taghavinia, H.-P. Wu, E.W.-G. Diau, J. Mater. Chem. A 4, 13488 (2016).

    Google Scholar 

  83. J.M. Ball, S.D. Stranks, M.T. Hörantner, S. Hüttner, W. Zhang, E.J. Crossland, I. Ramirez, M. Riede, M.B. Johnston, R.H. Friend, Energy Environ. Sci. 8, 602 (2015).

    Google Scholar 

  84. R.E. Treharne, A. Seymour-Pierce, K. Durose, K. Hutchings, S. Roncallo, D. Lane, J. Phys. Conf. Ser. 286, 012038 (2011).

    Google Scholar 

  85. J.M. Ball, S.D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E.J.W. Crossland, I. Ramirez, M. Riede, M.B. Johnston, R.H. Friend, H.J. Snaith, Energy Environ. Sci. 8, 602 (2015).

    Google Scholar 

  86. S. Dabbabi, A. Garcia-Loureiro, M. Ajili, T. Ben Nasr, N. Kamoun, Mater. Res. Express 6, 1050b6 (2019).

    Google Scholar 

  87. M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, M. Topič, Opt. Express 23, A263 (2015).

    Google Scholar 

  88. S. Manzoor, J. Häusele, K.A. Bush, A.F Palmstrom, J. Carpenter, Z.J. Yu, S.F. Bent, M.D. McGehee, Z.C. Holman, Opt. Express 26, 27441 (2018).

    Google Scholar 

  89. R.J. Moerland, J.P. Hoogenboom, Optica 3, 112 (2016).

    Google Scholar 

  90. M. Rubin, Sol. Energy Mater. 12, 275 (1985).

    Google Scholar 

  91. S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P.T. Probst, J. Joseph. T.A.F. König, ACS Appl. Mater. Interfaces 11, 13752 (2019).

    Google Scholar 

  92. C. Stelling, C.R. Singh, M. Karg, T.A.F. König, M. Thelakkat, M. Retsch, Sci. Rep. 7, 42530 (2017).

    Google Scholar 

Download references

Acknowledgments

We acknowledge support from the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (NRF-2020R1A2C3009115, NRF-2017M1A2A2087351 [the Technology Development Program to Solve Climate Changes], and NRF-2017M3A6A7051089 [Global Frontier R&D Program on Center for Multiscale Energy Systems]).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Choi, K., Min, C.H. et al. Photon recycling in halide perovskite solar cells for higher efficiencies. MRS Bulletin 45, 439–448 (2020). https://doi.org/10.1557/mrs.2020.145

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.145

Navigation