Skip to main content
Log in

Hole-conductor-free perovskite solar cells

  • Halide Perovskite Opto- and Nanoelectronic Materials and Devices
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Metal-halide perovskite solar cells (PSCs) have become a promising candidate for photovoltaic applications. Current popular organic hole conductors for highly efficient PSCs bring cost and stability issues, which hinder the commercialization of the PSCs. Hole-conductor-free PSCs are attracting great interest because they eliminate the adverse effects of organic hole conductors by transporting holes in the perovskite itself. In this article, we summarize recent progress in conventional, inverted, and printable mesoscopic hole-conductor-free PSCs. Specifically, we emphasize the stunning stability and scale-up manufacturing of printable hole-conductor-free PSCs, discussing their potential from laboratory to market. The causes for hole-conductor-free PSCs’ current low efficiency are also discussed, and are primarily ascribed to energy-level alignment and interface recombination. We believe that the efficiencies of hole-conductor-free PSCs can be enhanced to be comparable with hole-conductor-containing PSCs by interface modification and material design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. National Renewable Energy Laboratory Efficiency Chart (2019).

  2. Q. Luo, Y. Zhang, C. Liu, J. Li, N. Wang, H. Lin, J. Mater. Chem. A 3, 15996 (2015).

    Google Scholar 

  3. W.H. Nguyen, C.D. Bailie, E.L. Unger, M.D. McGehee, J. Am. Chem. Soc. 136, 10996 (2014).

    Google Scholar 

  4. S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, H.J. Snaith, Nano Lett. 14, 5561 (2014).

    Google Scholar 

  5. Z. Ku, Y. Rong, M. Xu, T. Liu, H. Han, Sci. Rep. 3, 3132 (2013).

    Google Scholar 

  6. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, Science 345, 295 (2014).

    Google Scholar 

  7. L. Zhang, T. Liu, L. Liu, M. Hu, Y. Yang, A. Mei, H. Han, J. Mater. Chem. A 3, 9165 (2015).

    Google Scholar 

  8. L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 134, 17396 (2012).

    Google Scholar 

  9. S. Aharon, B.E. Cohen, L. Etgar, J. Phys. Chem. C 118, 17160 (2014).

    Google Scholar 

  10. S. Aharon, S. Gamliel, B.E. Cohen, L. Etgar, Phys. Chem. Chem. Phys. 16, 10512 (2014).

    Google Scholar 

  11. W. Ruan, Z. Zhang, Y. Hu, F. Bai, T. Qiu, S. Zhang, Appl. Surf. Sci. 465, 420 (2019).

    Google Scholar 

  12. J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, J. Liu, J. Am. Chem. Soc. 138, 15829 (2016).

    Google Scholar 

  13. J. Liu, Q. Zhou, N.K. Thein, L. Tian, D. Jia, E.M.J. Johansson, X. Zhang, J. Mater. Chem. A 7, 13777 (2019).

    Google Scholar 

  14. S. Gamliel, A. Dymshits, S. Aharon, E. Terkieltaub, L. Etgar, J. Phys. Chem. C 119, 19722 (2015).

    Google Scholar 

  15. Y. Qiang, J. Cheng, Y. Qi, H. Shi, H. Liu, C. Geng, Y Xie, J. Alloys Compd. 809, 151817 (2019).

    Google Scholar 

  16. H. Zhou, Y Shi, K. Wang, Q. Dong, X. Bai, Y. Xing, Y. Du, T. Ma, J. Phys. Chem. C 119, 4600 (2015).

    Google Scholar 

  17. F. Li, C. Wang, P. Liu, Y. Xiao, L. Bai, F. Qi, X. Hou, H. Zhang, Y. Wang, S. Wang, X.-Z. Zhao, Solar RRL 3, 1800297 (2019).

    Google Scholar 

  18. S. Lin, B. Yang, X. Qiu, J. Yan, J. Shi, Y. Yuan, W. Tan, X. Liu, H. Huang, Y. Gao, C. Zhou, Org. Electron. 53, 235 (2018).

    Google Scholar 

  19. L. Qiu, S. He, J. Yang, F. Jin, J. Deng, H. Sun, X. Cheng, G. Guan, X. Sun, H. Zhao, H. Peng, J. Mater Chem. A 4, 10105 (2016).

    Google Scholar 

  20. H. Hu, D. Wang, Y. Zhou, J. Zhang, S. Lv, S. Pang, X. Chen, Z. Liu, N.P. Padture, G. Cui, RSC Adv. 4, 28964 (2014).

    Google Scholar 

  21. W. Kong, W. Li, C. Liu, H. Liu, J. Miao, W. Wang, S. Chen, M. Hu, D. Li, A. Amini, S. Yang, J. Wang, B. Xu, C. Cheng, ACS Nano 13, 1625 (2019).

    Google Scholar 

  22. S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao, W. Sun, Y. Li, F. Gu, J. Wang, Z. Liu, Z. Bian, C. Huang, J. Am. Chem. Soc. 139, 7504 (2017).

    Google Scholar 

  23. W.-Q. Wu, Q. Wang, Y. Fang, Y. Shao, S. Tang, Y. Deng, H. Lu, Y. Liu, T. Li, Z. Yang, A. Gruverman, J. Huang, Nat. Commun. 9, 1625 (2018).

    Google Scholar 

  24. Y. Zhang, X. Hu, L. Chen, Z. Huang, Q. Fu, Y. Liu, L. Zhang, Y. Chen, Org. Electron. 30, 281 (2016).

    Google Scholar 

  25. Y. Hu, Z. Zhang, A. Mei, Y. Jiang, X. Hou, Q. Wang, K. Du, Y. Rong, Y. Zhou, G. Xu, H. Han, Adv. Mater 30, 1705786 (2018).

    Google Scholar 

  26. Y. Xiong, X. Zhu, A. Mei, F. Qin, S. Liu, S. Zhang, Y. Jiang, Y. Zhou, H. Han, Solar RRL 2, 1800002 (2018).

    Google Scholar 

  27. C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu, F. Qin, Y. Xiong, Y. Rong, Y. Hu, Y. Zhou, S. Xie, H. Han, Nano Energy 53, 160 (2018).

    Google Scholar 

  28. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Nature 517, 476 (2015).

    Google Scholar 

  29. M. Hu, L. Liu, A. Mei, Y. Yang, T. Liu, H. Han, J. Mater. Chem. A 2, 17115 (2014).

    Google Scholar 

  30. X. Hou, M. Xu, C. Tong, W. Ji, Z. Fu, Z. Wan, F. Hao, Y. Ming, S. Liu, Y. Hu, H. Han, Y. Rong, Y. Yao, J. Power Sources 415, 105 (2019).

    Google Scholar 

  31. Q. Wang, W. Zhang, Z. Zhang, S. Liu, J. Wu, Y. Guan, A. Mei, Y. Rong, Y. Hu, H. Han, Adv. Energy Mater 10, 1903092 (2019).

    Google Scholar 

  32. W. Li, J. Li, J. Li, J. Fan, Y. Mai, L. Wang, J. Mater. Chem. A 4, 17104 (2016).

    Google Scholar 

  33. Y. Hu, S. Si, A. Mei, Y. Rong, H. Liu, X. Li, H. Han, Solar RRL 1, 1600019 (2017).

    Google Scholar 

  34. G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M.K. Nazeeruddin, Nat. Commun. 8, 15684 (2017).

    Google Scholar 

  35. X. Li, M. Tschumi, H. Han, S.S. Babkair, R.A. Alzubaydi, A.A. Ansari, S.S. Habib, M.K. Nazeeruddin, S.M. Zakeeruddin, M. Grätzel, Energy Technol. 3, 551 (2015).

    Google Scholar 

  36. A. Priyadarshi, L.J. Haur, P. Murray, D. Fu, S. Kulkarni, G. Xing, T.C. Sum, N. Mathews, S.G. Mhaisalkar, Energy Environ. Sci. 9, 3687 (2016).

    Google Scholar 

  37. F. De Rossi, J.A. Baker, D. Beynon, K.E.A. Hooper, S.M.P. Meroni, D. Williams, Z. Wei, A. Yasin, C. Charbonneau, E.H. Jewell, T.M. Watson, Adv. Mater. Technol. 3, 1800156 (2018).

    Google Scholar 

  38. Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov, S.I. Seok, M.D. McGehee, E.H. Sargent, H. Han, Science 361, eaat8235 (2018).

    Google Scholar 

  39. J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Nat. Nanotechnol. 11, 75 (2016).

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 21702069, 91733301, and 51902117), the Fundamental Research Funds for the Central Universities, the Science and Technology Department of Hubei Province (No. 2017AAA190), the 111 Project (No. B07038), the Program for HUST Academic Frontier Youth Team (2016QYTD06), and the Fundamental Research Funds for the Central Universities (No. 2019kfyXJJS051).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Rong, Y., Hu, Y. et al. Hole-conductor-free perovskite solar cells. MRS Bulletin 45, 449–457 (2020). https://doi.org/10.1557/mrs.2020.144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.144

Navigation