Skip to main content
Log in

Emergent high-temperature superconductivity at interfaces

  • Emergent Quantum Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Low-dimensional superconductors have been at the forefront of physics research due to their rich physical properties such as high-temperature (Tc) superconductivity. In this article, we review the field of emergent high-Tc superconductivity at interfaces of heterostructures, focusing on the experimental advances and its physical mechanism. Charge transfer between constituent materials leads to two-dimensional carrier confinement that facilitates occurrence of superconductivity at the interface. We discuss the similarities between bulk high-Tc superconductors and interface systems, as well as implications from a survey of interface superconductors. We expect that the hybrid heterostructures and the ability to manipulate them on an atomic scale could be an enormously fertile ground to explore superconductivity with higher critical temperature Tc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. N. Reyren, S. Thiel, A.D. Caviglia, L.F. Kourkoutis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.S. Rüetschi, D. Jaccard, M. Gabay, D.A. Muller, J.M. Triscone, J. Mannhart, Science 317, 1196 (2007).

    Google Scholar 

  2. A. Gozar, G. Logvenov, L.F. Kourkoutis, A.T. Bollinger, L.A. Giannuzzi, D.A. Muller, I. Božović, Nature 455, 782 (2008).

    Google Scholar 

  3. Q.Y. Wang, Z. Li, W.H. Zhang, Z.C. Zhang, J.S. Zhang, W. Li, H. Ding, Y.B. Ou, P. Deng, K. Chang, J. Wen, C.L. Song, K. He, J.F. Jia, S.H. Ji, Y.Y. Wang, L.L. Wang, X. Chen, X.C. Ma, Q.K. Xue, Chin. Phys. Lett. 29, 037402 (2012).

    Google Scholar 

  4. C. Richter, H. Boschker, W. Dietsche, E. Fillis-Tsirakis, R. Jany, F. Loder, L.F. Kourkoutis, D.A. Muller, J.R. Kirtley, C.W. Schneider, J. Mannhart, Nature 502, 528 (2013).

    Google Scholar 

  5. B. Keimer, S. Kivelson, M. Norman, S. Uchida, J. Zaanen, Nature 518, 179 (2015).

    Google Scholar 

  6. Y. Saito, T. Nojima, Y. Iwasa, Nat. Rev. Mater. 2, 16094 (2017).

    Google Scholar 

  7. Q.L. He, H.C. Liu, M.Q. He, Y.H. Lai, H.T. He, G. Wang, K.T. Law, R. Lortz, J.N. Wang, I.K. Sou, Nat. Commun. 5, 4247 (2014).

    Google Scholar 

  8. Y.M. Zhang, J.Q. Fan, W.L. Wang, D. Zhang, L.L. Wang, W. Li, K. He, C.L. Song, X.C. Ma, Q.K. Xue, Phys. Rev. B 98, 220508 (2018).

    Google Scholar 

  9. J.G. Bednorz, K.A. Müller, Z. Phys. Condens. Matter B 64, 189 (1986).

    Google Scholar 

  10. Y. Kamihara, T. Watanabe, M. Harino, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Google Scholar 

  11. D.C. Johnston, Adv. Phys. 59, 803 (2010).

    Google Scholar 

  12. V.L. Ginzburg, Phys. Lett. 13, 101 (1964).

    Google Scholar 

  13. A.D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, J.M. Triscone, Nature 456, 624 (2008).

    Google Scholar 

  14. V.Y. Butko, G.Y. Logvenov, N. Nožović, Z. Radovic, I. Božović, Adv. Mater. 21, 3644 (2009).

    Google Scholar 

  15. S. Smadici, J.C. Lee, S. Wang, P. Abbamonte, G. Logvenov, A. Gozar, C.D. Cavellin, I. Božović, Phys. Rev. Lett. 102, 107004 (2009).

    Google Scholar 

  16. J. Wu, O. Pelleg, G. Logvenov, A.T. Bollinger, Y.J. Sun, G.S. Boebinger, M. Vanević, Z. Radović, I. Božović, Nat. Mater. 12, 877 (2013).

    Google Scholar 

  17. R. Dingle, H.L. Störmer, A.C. Gossard, W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978).

    Google Scholar 

  18. Y. Guo, Y. F. Zhang, X.Y. Bao, T.Z. Han, Z. Tang, L.X. Zhang, W.G. Zhu, E.G. Wang, Q. Niu, Z.Q. Qiu, J.F. Jia, Z.X. Zhao, Q.K. Xue, Science 306, 1915 (2004).

    Google Scholar 

  19. S. Qin, J. Kim, Q. Niu, C.K. Shih, Science 324, 1314 (2009).

    Google Scholar 

  20. T. Zhang, P. Cheng, W.J. Li, Y.J. Sun, G. Wang, X.G. Zhu, K. He, L.L. Wang, X.C. Ma, X. Chen, Y.Y. Wang, Y. Liu, H.Q. Lin, J.F. Jia, Q.K. Xue, Nat. Phys. 6, 104 (2010).

    Google Scholar 

  21. H.M. Zhang, Y. Sun, W. Li, J.P. Peng, C.L. Song, Y. Xing, Q.H. Zhang, J.Q. Guan, Z. Li, Y.F. Zhao, S.H. Ji, L.L. Wang, K. He, X. Chen, L. Gu, L.S. Ling, M.L. Tian, L. Li, X.C. Xie, J.P. Liu, H. Yang, Q.K. Xue, J. Wang, X.C. Ma, Phys. Rev. Lett. 114, 107003 (2015).

    Google Scholar 

  22. C.L. Song, Y.L. Wang, Y. P. Jiang, Z. Li, L. Wang, K. He, X. Chen, X.C. Ma, Q.K. Xue, Phys. Rev. B 84, 020503 (2011).

    Google Scholar 

  23. C.L. Song, Y.L. Wang, P. Cheng, Y.P. Jiang, W. Li, T. Zhang, Z. Li, K. He, L. Wang, J.F. Jia, H.H. Hung, C.J. Wu, X.C. Ma, X. Chen, Q.K. Xue, Science 332, 1410 (2011).

    Google Scholar 

  24. S.L. He, J.F. He, W.H. Zhang, L. Zhao, D.F. Liu, X. Liu, D.X. Mou, Y.B. Ou, Q.Y. Wang, Z. Li, L.L. Wang, Y.Y. Peng, Y. Liu, C.Y. Chen, L. Yu, G.D. Liu, X.L. Dong, J. Zhang, C.T. Chen, Z.Y. Xu, X. Chen, X.C. Ma, Q.K. Xue, X.J. Zhou, Nat. Mater. 12, 605 (2013).

    Google Scholar 

  25. S.Y. Tan, Y. Zhang, M. Xia, Z.R. Ye, F. Chen, X. Xie, R. Peng, D.F. Xu, Q. Fan, H.C. Xu, J. Jiang, T. Zhang, X.C. Lai, T. Xiang, J.P. Hu, N.P. Xie, D.L. Feng, Nat. Mater. 12, 634 (2013).

    Google Scholar 

  26. J.F. Ge, Z.L. Liu, C.H. Liu, C.L. Gao, D. Qian, Q.K. Xue, Y. Liu, J.F. Jia, Nat. Mater. 14, 285 (2014).

    Google Scholar 

  27. I.I. Mazin, Nat. Mater. 14, 755 (2015).

    Google Scholar 

  28. D. Huang, J.E. Hoffman, Annu. Rev. Condens. Matter Phys. 8, 311 (2017).

    Google Scholar 

  29. N.Y. Fogel, E.I. Buchstab, Y.V. Bomze, O.I. Yuzephovich, M.Y. Mikhailov, A.Y Sipatov, E.A. Pashitskii, R.I. Shekhter, M. Jonson, Phys. Rev. B 73, 161306 (2006).

    Google Scholar 

  30. Y.L. Chen, J.G. Analytis, J.H. Chu, Z.K. Liu, S.K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, Z.X. Shen, Science 325, 178 (2009).

    Google Scholar 

  31. R. Peng, X.P. Shen, X. Xie, H.C. Xu, S.Y Tan, M. Xia, T. Zhang, H.Y. Cao, X.G. Gong, J.P. Hu, B.P. Xie, D.L. Feng, Phys. Rev. Lett. 112, 107001 (2014).

    Google Scholar 

  32. E. Berg, D. Orgad, S.A. Kivelson, Phys. Rev. B 78, 094509 (2008).

    Google Scholar 

  33. F.S. Li, Q.H. Zhang, C.J. Tang, C. Liu, J.N. Shi, C.N. Nie, G.Y. Zhou, Z. Li, W.H. Zhang, C.L. Song, K. He, S.H. Ji, S.B. Zhang, L. Gu, L.L. Wang, X.C. Ma, Q.K. Xue, 2D Materials 3, 024002 (2016).

    Google Scholar 

  34. H. Ding, Y.F. Lv, K. Zhao, W.L. Wang, L.L. Wang, C.L. Song, X. Chen, X.C. Ma, Q.K. Xue, Phys. Rev. Lett. 117, 067001 (2016).

    Google Scholar 

  35. H.M. Zhang, D. Zhang, X.W. Lu, C. Liu, G.Y. Zhou, X.C. Ma, L.L. Wang, P. Jiang, Q.K. Xue, X.H. Bao, Nat Commun. 8, 214 (2017).

    Google Scholar 

  36. W.W. Zhao, M.D. Li, C.Z. Chang, J. Jiang, L.J. Wu, C.X. Liu, J.S. Moodera, Y.M. Zhu, M.H.W. Chan, Sci. Adv. 4, eaa02683 (2018).

    Google Scholar 

  37. Y. Miyata, K. Nakayama, K. Sugawara, T. Sato, T. Takahashi, Nat. Mater. 14, 775 (2015).

    Google Scholar 

  38. C.L. Song, H.M. Zhang, Y. Zhong, X.P. Hu, S.H. Ji, L. Wang, K. He, X.C. Ma, Q.K. Xue, Phys. Rev Lett. 116, 157001 (2016).

    Google Scholar 

  39. B. Lei, J.H. Cui, Z.J. Xiang, C. Shang, N.Z. Wang, G.J. Ye, X.G. Luo, T. Wu, Z. Sun, X.H. Chen, Phys. Rev Lett. 116, 077002 (2016).

    Google Scholar 

  40. M. Burrard-Lucas, D.G. Free, S.J. Sedlmaier, J.D. Wright, S.J. Cassidy, Y. Hara, A.J. Corkett, T. Lancaster, P.J. Baker, S.J. Blundell, S.J. Clarke, Nat. Mater. 12, 15 (2013).

    Google Scholar 

  41. X.F. Lu, N.Z. Wang, H. Wu, Y.P. Wu, D. Zhao, X.Z. Zeng, X.G. Luo, T. Wu, W. Bao, G.H. Zhang, X.H. Chen, Nat. Mater. 14, 325 (2015).

    Google Scholar 

  42. D.H. Lee, Chin. Phys. B 24, 117405 (2015).

    Google Scholar 

  43. Q. Song, T.L. Yu, X. Lou, B.P. Xie, H.C. Xu, C.H.P. Wen, Q. Yao, S.Y. Zhang, X.T. Zhu, J.D. Guo, R. Peng, D.L. Feng, Nat. Commun. 10, 758 (2019).

    Google Scholar 

  44. J.J. Lee, F.T. Schmitt, R.G. Moore, S. Johnston, Y.T. Cui, W. Li, M. Yi, Z.K. Liu, M. Hashimoto, Y. Zhang, D.H. Lu, T.P. Devereaux, D.H. Lee, Z.X. Shen, Nature 515, 245 (2014).

    Google Scholar 

  45. D.Y Jiang, T. Hu, L.X. You, Q.M. Li, A. Li, H.M. Wang, G. Mu, Z.Y. Chen, H.R. Zhang, G.H. Yu, J. Zhu, Q.J. Sun, C.T. Lin, H. Xiao, X.M. Xie, M.H. Jiang, Nat. Commun. 5, 5708 (2014).

    Google Scholar 

  46. Y.J. Yu, L.G. Ma, P. Cai, R.D. Zhong, C. Ye, J. Shen, G.D. Gu, X.H. Chen, Y.B. Zhang, Nature 575, 156 (2019).

    Google Scholar 

  47. Y. Zhong, Y. Wang, S. Han, Y.F. Lv, W.L. Wang, D. Zhang, H. Ding, Y.M. Zhang, L. Wang, K. He, R.D. Zhong, J.A. Schneeloch, G.D. Gu, C.L. Song, X.C. Ma, Q.K. Xue, Sci. Bull. 61, 1239 (2016).

    Google Scholar 

  48. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev 106, 162 (1957).

    Google Scholar 

  49. I.I. Mazin, D.J. Singh, M.D. Johannes, M.H. Du, Phys. Rev. Lett. 101, 057003 (2008).

    Google Scholar 

  50. K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, H. Aoki, Phys. Rev. Lett. 101, 087004 (2008).

    Google Scholar 

  51. Q. Fan, W.H. Zhang, X. Liu, Y.J. Yan, M.Q. Ren, R. Peng, H.C. Xu, B.P. Xie, J.P Hu, T. Zhang, D.L. Feng, Nat. Phys. 11, 946 (2015).

    Google Scholar 

  52. Z.Y. Du, X. Yang, D. Altenfeld, Q.Q. Gu, H. Yang, I. Eremin, P.J. Hirschfeld, I.I. Mazin, H. Lin, X.Y. Zhu, H.H. Wen, Nat. Phys. 14, 134 (2018).

    Google Scholar 

  53. K. Jiang, X.X. Wu, J.P. Hu, Z.Q. Wang, Phys. Rev Lett. 121, 227002 (2018).

    Google Scholar 

  54. Z.F. Wang, H.M. Zhang, D.F. Liu, C. Liu, C.J. Tang, C.L. Song, Y. Zhong, J.P. Peng, F.S. Li, C.N. Nie, L.L. Wang, X.J. Zhou, X.C. Ma, Q.K. Xue, F. Liu, Nat. Mater. 15, 968 (2016).

    Google Scholar 

  55. J.M. Lu, O. Zheliuk, I. Leermarkers, N.F.Q. Yuan, U. Zeitler, K.T. Law, J.T. Ye, Science 350, 1353 (2015).

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation and the Ministry of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can-Li Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, CL., Ma, XC. & Xue, QK. Emergent high-temperature superconductivity at interfaces. MRS Bulletin 45, 366–372 (2020). https://doi.org/10.1557/mrs.2020.120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.120

Navigation