Skip to main content
Log in

Microstructural design for advanced light metals

  • Computational Design And Development Of Alloys
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

We highlight the current understanding of mechanisms of phase transformation, strengthening, and the role of alloying elements in aluminum, magnesium, and titanium alloys, including nucleation and growth of precipitates, precipitate–dislocation interactions, solute segregation at precipitate–matrix interfaces and planar defects, and the development of strengthening models that account for the real particle shape. Future directions such as atomic-scale elemental mapping and computation, and the influence of particle shape on mechanical properties are discussed. With the combination of advanced characterization and computational tools, it is anticipated that much less time will be needed to develop the next generation of light alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. H.I. Aaronson, M. Enomoto, J.K. Lee, Mechanisms of Diffusional Phase Transformations in Metals and Alloys ( CRC Press, Taylor & Francis Group, Boca Raton, FL, 2010).

    Google Scholar 

  2. L. Bourgeois, C. Dwyer, M. Weyland, J.F. Nie, B.C. Muddle, Acta Mater. 59, 7043 (2011).

    Google Scholar 

  3. K. Hono, N. Sano, S.S. Babu, R. Okano, T. Sakurai, Acta Metall. Mater. 41, 829 (1993).

    Google Scholar 

  4. L. Reich, M. Murayama, K. Hono, Acta Mater. 46, 6053 (1998).

    Google Scholar 

  5. S.J. Kang, Y.W. Kim, M. Kim, J.M. Zuo, Acta Mater. 81, 501 (2014).

    Google Scholar 

  6. M. Murayama, K. Hono, Scripta Mater. 44, 701 (2001).

    Google Scholar 

  7. V. Araullo-Peters, B. Gault, F. de Geuser, A. Deschamps, J.M. Cairney, Acta Mater. 66, 199 (2014).

    Google Scholar 

  8. S.J. Kang, T.H. Kim, C.W. Yang, J.I. Lee, E.S. Park, T.W. Noh, M. Kim, Scripta Mater. 109, 68 (2015).

    Google Scholar 

  9. E. Gumbmann, W. Lefebvre, F. de Geuser, C. Sigli, A. Deschamps, Acta Mater. 115, 104 (2016).

    Google Scholar 

  10. H. Liu, Y. Gao, L. Qi, Y. Wang, J.F. Nie, Metall. Mater. Trans. 46A, 3287 (2015).

    Google Scholar 

  11. E. Hornbogen, E.A. Starke, Acta Metall. Mater. 41, 1 (1993).

    Google Scholar 

  12. J.F. Nie, B.C. Muddle, J. Phase Equilib. 19, 543 (1998).

    Google Scholar 

  13. J.F. Nie, B.C. Muddle, Mater. Sci. Eng. A 319, 448 (2001).

    Google Scholar 

  14. J.F. Nie, B.C. Muddle, Acta Mater. 56, 3490 (2008).

    Google Scholar 

  15. J.F. Nie, N. Wilson, Y.M. Zhu, Z. Xu, Acta Mater. 106, 260 (2016).

    Google Scholar 

  16. J.F. Nie, in Physical Metallurgy, 5th ed., D.E. Laughlin, K. Hono, Eds. (Elsevier, Amsterdam, The Netherlands, 2014), p. 2009.

    Google Scholar 

  17. J.W. Christian, Prog. Mater. Sci. 42, 101 (1997).

    Google Scholar 

  18. T.T. Sasaki, K. Oh-ishi, T. Ohkubo, K. Hono, Scripta Mater. 55, 251 (2006).

    Google Scholar 

  19. C.L. Mendis, C.J. Bettles, M.A. Gibson, C. Hutchinson, Mater. Sci. Eng. A 435, 163 (2006).

    Google Scholar 

  20. C.Q. Liu, H.W. Chen, J.F. Nie, Scripta Mater. 123, 5 (2016).

    Google Scholar 

  21. J. Wang, J.P. Hirth, C.N. Tome, Acta Mater. 57, 5521 (2009).

    Google Scholar 

  22. X.Z. Liao, J. Wang, J.F. Nie, Y.Y. Jiang, P.D. Wu, MRS Bull. 41, 314 (2016).

    Google Scholar 

  23. M.A. Kumar, I.J. Beyerlein, C.N. Tome, Acta Mater. 116, 143 (2016).

    Google Scholar 

  24. H. Liu, F.X. Lin, P.Y. Zhao, N. Moelans, Y. Wang, J.F. Nie, Acta Mater. 153, 86 (2018).

    Google Scholar 

  25. Y.M. Zhu, S.W. Xu, J.F. Nie, Acta Mater. 143, 1 (2018).

    Google Scholar 

  26. Y.M. Zhu, M.Z. Bian, J.F. Nie, Acta Mater. 127, 505 (2017).

    Google Scholar 

  27. J.P. Hadorn, K. Hantzsche, S.B. Yi, J. Bohlen, D. Letzig, J.A. Wollmershauser, S.R. Agnew, Metall. Mater. Trans. 43A, 1347 (2012).

    Google Scholar 

  28. M. Bugnet, A. Kula, M. Niewczas, G.A. Botton, Acta Mater. 79, 66 (2014).

    Google Scholar 

  29. J.P. Hadorn, T.T. Sasaki, T. Nakata, T. Ohkubo, S. Kamado, K. Hono, Scripta Mater. 93, 28 (2014).

    Google Scholar 

  30. J.D. Robson, Metall. Mater. Trans. 45A, 3205 (2014).

    Google Scholar 

  31. Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, J.F. Nie, Acta Mater. 105, 479 (2016).

    Google Scholar 

  32. G. Lutjering, J.C. Wiliams, Titanium, 2nd ed. (Springer, Berlin, 2007).

    Google Scholar 

  33. G.E. Totten, D.S. MacKenzie, ASM Handbook, Volume 4E: Heat Treating of Nonferrous Alloys (ASM International, Materials Park, OH, 2016).

    Google Scholar 

  34. W.G. Burgers, Physica 1, 561 (1934).

    Google Scholar 

  35. Y. Gao, R. Shi, J.F. Nie, S.A. Dregia, Y. Wang, Acta Mater. 109, 353 (2016).

    Google Scholar 

  36. D. Qiu, R. Shi, D. Zhang, W. Lu, Y. Wang, Acta Mater. 88, 218 (2015).

    Google Scholar 

  37. G. Lutjering, Mater. Sci. Eng. A 243, 32 (1998).

    Google Scholar 

  38. S. Banerjee, P. Mukhopadhyay, Phase Transformations: Examples from Titanium and Zirconium Alloys (Elsevier Science, Oxford, 2007).

    Google Scholar 

  39. A. Boyne, D. Wang, R.P. Shi, Y. Zheng, A. Behera, S. Nag, J.S. Tiley, H.L. Fraser, R. Banerjee, Y. Wang, Acta Mater. 64, 188 (2014).

    Google Scholar 

  40. T.W. Heo, D.S. Shin, L.Q. Chen, Metall. Mater. Trans. 45A, 3438 (2014).

    Google Scholar 

  41. S.L. Semiatin, K.T. Kinsel, A.L. Pilchak, G.A. Sargent, Metall. Mater. Trans. 44A, 3852 (2013).

    Google Scholar 

  42. D. Qiu, R. Shi, P. Zhao, D. Zhang, W. Lv, Y. Wang, Acta Mater. 112, 347 (2016).

    Google Scholar 

  43. R. Shi, V. Dixit, H.L. Fraser, Y. Wang, Acta Mater. 102, 197 (2016).

    Google Scholar 

  44. R.P. Shi, N. Zhou, S. Niezgoda, Y. Wang, Acta Mater. 94, 224 (2015).

    Google Scholar 

  45. R.P. Shi, D. Wang, Y. Wang, in ASM Handbook, Volume 4E: Heat Treating of Nonferrous Alloys, G.E. Totten, Ed. (ASM International, Materials Park, OH, 2016), p. 573.

    Google Scholar 

  46. Integrated Computational Materials Engineering (National Academies Press, Washington, DC, 2008).

  47. D. Wang, R.P. Shi, Y.F. Zheng, R. Banerjee, H.L. Fraser, Y. Wang, JOM 66, 1287 (2014).

    Google Scholar 

  48. Y.F. Zheng, J.M. Sosa, R.E.A. Williams, Y. Wang, R. Banerjee, H.L. Fraser, Scripta Mater. 111, 81 (2016).

    Google Scholar 

  49. Y.F. Zheng, R.E.A. Williams, J.M. Sosa, T. Alam, Y. Wang, R. Banerjee, H.L. Fraser, Acta Mater. 103, 165 (2016).

    Google Scholar 

  50. Y.F. Zheng, R.E.A. Williams, D. Wang, R.P. Shi, S. Nag, P. Kami, J.M. Sosa, R. Banerjee, Y. Wang, H.L. Fraser, Acta Mater. 103, 850 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Feng Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, JF., Wang, Y. Microstructural design for advanced light metals. MRS Bulletin 44, 281–286 (2019). https://doi.org/10.1557/mrs.2019.73

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.73

Navigation