Skip to main content
Log in

Metastability alloy design

  • Computational Design And Development Of Alloys
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article reviews the concept of metastability in alloy design. While most materials are thermodynamically metastable at some stage during synthesis and service, we discuss here cases where metastable phases are not coincidentally inherited from processing, but rather are engineered. Specifically, we aim at compositional (partitioning), thermal (kinetics), and microstructure (size effects and confinement) tuning of metastable phases so that they can trigger athermal transformation effects when mechanically, thermally, or electromagnetically loaded. Such a concept works both at the bulk scale and also at a spatially confined microstructure scale, such as at lattice defects. In the latter case, local stability tuning works primarily through elemental partitioning to dislocation cores, stacking faults, interfaces, and precipitates. Depending on stability, spatial confinement, misfit, and dispersion, both bulk and local load-driven athermal transformations can equip alloys with substantial gain in strength, ductility, and damage tolerance. Examples include self-organized metastable nanolaminates, austenite reversion steels, metastable medium- and high-entropy alloys, as well as steels and titanium alloys with martensitic phase transformation and twinning-induced plasticity effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, P.-P. Choi, Acta Mater. 61, 6132 (2013).

    Google Scholar 

  2. D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, P.-P. Choi, Curr. Opin. Solid State Mater. Sci. 18, 253 (2014).

    Google Scholar 

  3. M. Kuzmina, D. Ponge, D. Raabe, Acta Mater. 86, 182 (2015).

    Google Scholar 

  4. S.K. Makineni, M. Lenz, P. Kontis, Z. Li, A. Kumar, P.J. Felfer, S. Neumeier, M. Herbig, E. Spiecker, D. Raabe, B. Gault, JOM 70, 1736 (2018).

    Google Scholar 

  5. Y. Li, D. Raabe, M. Herbig, P.-P. Choi, S. Goto, A. Kostka, H. Yarita, C. Borchers, R. Kirchheim, Phys. Rev. Lett. 113, 106104 (2014).

    Google Scholar 

  6. O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16, 1391 (2000).

    Google Scholar 

  7. S. Zaefferer, J. Ohlert, W. Bleck, Acta Mater. 52, 2765 (2004).

    Google Scholar 

  8. J. Liu, C. Chen, Q. Feng, X. Fang, H. Wang, F. Liu, J. Lu, D. Raabe, Mater. Sci. Eng. A 703, 236 (2017).

    Google Scholar 

  9. D. Raabe, Acta Mater. 45, 1137 (1997).

    Google Scholar 

  10. G. Frommeyer, U. Brüx, P. Neumann, ISIJ Int. 43, 438 (2003).

    Google Scholar 

  11. J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.-M. Lee, Y.-K. Lee, S.-I. Lee, B. Hwang, Acta Mater. 122, 199 (2017).

    Google Scholar 

  12. S. Allain, J.P. Chateau, O. Bouaziz, Steel Res. Int. 73, 299 (2002).

    Google Scholar 

  13. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, Curr. Opin. Solid State Mater. Sci. 15, 141 (2011).

    Google Scholar 

  14. A. Saeed-Akbari, L. Mosecker, A. Schwedt, W. Bleck, Metall. Mater. Trans. A 43, 1688 (2012).

    Google Scholar 

  15. I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 59, 6449 (2011).

    Google Scholar 

  16. D.R. Steinmetz, T. Japel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, D. Raabe, Acta Mater. 61, 494 (2013).

    Google Scholar 

  17. H. Idrissi, K. Renard, D. Schryvers, P.J. Jacques, Scr. Mater. 63, 961 (2010).

    Google Scholar 

  18. I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Mater. Sci. Eng. A 527, 3552 (2010).

    Google Scholar 

  19. W.S. Choi, S. Sandlöbes, N.V. Malyar, C. Kirchlechner, S. Korte-Kerzel, G. Dehm, B.C. De Cooman, D. Raabe, Acta Mater. 132, 162 (2017).

    Google Scholar 

  20. C. Herrera, D. Ponge, D. Raabe, Acta Mater. 59, 4653 (2011).

    Google Scholar 

  21. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, J.G. Speer, Mater. Sci. Eng. A 438, 25 (2006).

    Google Scholar 

  22. J.G. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51, 2611 (2003).

    Google Scholar 

  23. Y. Toji, H Matsuda, M. Herbig, P. P. Choi, D. Raabe, Acta Mater. 65, 215 (2014).

    Google Scholar 

  24. Y. Toji, G. Miyamoto, D. Raabe, Acta Mater. 86, 137 (2015).

    Google Scholar 

  25. Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, Acta Mater. 131, 323 (2017).

    Google Scholar 

  26. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014).

    Google Scholar 

  27. M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, Scr. Mater. 72, 5 (2014).

    Google Scholar 

  28. Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Acta Mater. 94, 124 (2015).

    Google Scholar 

  29. G. Laplanche, A. Kostka, O. Horst, G. Eggeler, E. George, Acta Mater. 118, 152 (2016).

    Google Scholar 

  30. Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227 (2016).

    Google Scholar 

  31. F. He, Z. Wang, Q. Wu, J. Li, J. Wang, C.T. Liu, Scr. Mater. 126, 15 (2017).

    Google Scholar 

  32. Z.M. Li, D. Raabe, JOM 69, 2099 (2017).

    Google Scholar 

  33. D. Ma, M. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, D. Raabe, Acta Mater. 98, 288 (2015).

    Google Scholar 

  34. Y.H. Jo, S. Jung, W.M. Choi, S.S. Sohn, H.S. Kim, B.J. Lee, N.J. Kim, S. Lee, Nat. Commun. 8, 15719 (2017).

    Google Scholar 

  35. Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81, 428 (2014).

    Google Scholar 

  36. S. Huang, W. Li, S. Lu, F.Y. Tian, J. Shen, E. Holmström, L. Vitos, Scr. Mater. 108, 44 (2015).

    Google Scholar 

  37. S. Huang, H. Huang, W. Li, D. Kim, S. Lu, X. Li, E. Holmström, S.K. Kwon, L. Vitos, Nat. Commun. 9, 2381 (2018).

    Google Scholar 

  38. A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, JOM 65, 1780 (2013).

    Google Scholar 

  39. S.F. Liu, Y.D. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, Z.P. Lu, Intermetallics 93, 269 (2017).

    Google Scholar 

  40. B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H.B. Bei, Z.G. Wu, E.P. George, R.O. Ritchie, Nature Commun. 7, 10602 (2016).

    Google Scholar 

  41. M.M. Wang, Z.M. Li, D. Raabe, Acta Mater. 147, 236 (2018).

    Google Scholar 

  42. C.E. Slone, S. Chakraborty, J. Miao, E.P. George, M.J. Mills, S.R. Niezgoda, Acta Mater. 158, 38 (2018).

    Google Scholar 

  43. N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M. Chen, H. Matsunoshita, K. Tanaka, H. Inui, E.P. George, Sci. Rep. 6, 35863 (2016).

    Google Scholar 

  44. D. Raabe, C.C. Tasan, H. Springer, M. Bausch, Steel Res. Int. 86, 1127 (2015).

    Google Scholar 

  45. L.L. Ma, L. Wang, Z.H. Nie, F.C. Wang, Y.F. Xue, J.L. Zhou, T.Q. Cao, Y.D. Wang, R. Yang, Acta Mater. 128, 12 (2017).

    Google Scholar 

  46. Z. Li, F. Körmann, B. Grabowski, J. Neugebauer, D. Raabe, Acta Mater. 136, 262 (2017).

    Google Scholar 

  47. J. Moon, Y. Qi, E. Tabachnikova, Y. Estrin, W.M. Choi, S.H. Joo, B.J. Lee, A. Podolskiy, M. Tikhonovsky, H.S. Kim, Mater. Lett. 202, 86 (2017).

    Google Scholar 

  48. M. Koyama, Z. Zhang, M. Wang, D. Ponge, D. Raabe, K. Tsuzaki, H. Noguchi, C.C. Tasan, Science 355, 1055 (2017).

    Google Scholar 

  49. M. Kuzmina, M. Herbig, D. Ponge, S. Sandlöbes, D. Raabe, Science 349, 1080 (2015).

    Google Scholar 

  50. A. Kwiatkowski da Silva, D. Ponge, Z. Peng, G. Inden, Y. Lu, A. Breen, B. Gault, D. Raabe, Nature Commun. 9, 1137 (2018).

    Google Scholar 

  51. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527, 2738 (2010).

    Google Scholar 

  52. M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, D. Raabe, Acta Mater. 79, 268 (2014).

    Google Scholar 

  53. M.M. Wang, C.C. Tasan, D. Ponge, A.C. Dippel, D. Raabe, Acta Mater. 85, 216 (2015).

    Google Scholar 

  54. M.M. Wang, C.C. Tasan, D. Ponge, A.C. Dippel, D. Raabe, Acta Mater. 111, 262 (2016).

    Google Scholar 

  55. R.H. Fowler, E.A. Guggenheim, Statistical Thermodynamics (Macmillan, New York, 1939).

    Google Scholar 

  56. A. Kwiatkowski da Silva, G. Leyson, M. Kuzmina, D. Ponge, M. Herbig, S. Sandlöbes, B. Gault, J. Neugebauer, D. Raabe, Acta Mater. 124, 305 (2017).

    Google Scholar 

  57. J. Zhang, C.C. Tasan, M.J. Lai, A.-C. Dippel, D. Raabe, Nat. Commun. 8, 14210 (2017).

    Google Scholar 

  58. M.J. Lai, T. Li, D. Raabe, Acta Mater. 151, 67 (2018).

    Google Scholar 

  59. M.J. Lai, C.C. Tasan, D. Raabe, Acta Mater. 111, 173 (2016).

    Google Scholar 

  60. M.J. Lai, C.C. Tasan, J. Zhang, B. Grabowski, L.F. Huang, D. Raabe, Acta Mater. 92, 55 (2015).

    Google Scholar 

  61. M.J. Lai, C.C. Tasan, D. Raabe, Acta Mater. 100, 290 (2015).

    Google Scholar 

  62. A. Dumay, J.P. Chateau, S. Allain, S. Migot, O. Bouaziz, Mater. Sci. Eng. A 483, 184 (2008).

    Google Scholar 

  63. S.T. Pisarik, D.C. Van Aken, Metall. Mater. Trans. A 47, 1009 (2016).

    Google Scholar 

  64. M.J. Lai, Y.J. Li, L Lillpopp, D. Ponge, S. Will, D. Raabe, Acta Mater. 155, 222 (2018).

    Google Scholar 

  65. D.T. Pierce, J.A. Jimenez, J. Bentley, D. Raabe, C. Oskay, J.E. Wittig, Acta Mater. 68, 238 (2014).

    Google Scholar 

  66. H. Springer, D. Raabe, Acta Mater. 60, 4950 (2012).

    Google Scholar 

  67. I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 60, 5791 (2012).

    Google Scholar 

  68. Z. Li, A. Ludwig, A. Savan, H. Springer, D. Raabe, J. Mater. Res. 33, 3156 (2018).

    Google Scholar 

  69. H. Luo, Z. Li, D. Raabe, Sci. Rep. 7, 9892 (2017).

    Google Scholar 

  70. H. Luo, W. Lu, X. Fang, D. Ponge, Z. Li, D. Raabe, Mater. Today (2018), doi:10.1016/j.mattod.2018.07.015.

  71. W.J. Lu, C.H. Liebscher, G. Dehm, D. Raabe, Adv. Mater. (2018), doi:10.1002/adma.201804727.

  72. S. Mahajan, M.L. Green, D. Brasen, Metall. Trans. A. 8, 283 (1977).

    Google Scholar 

  73. J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39, 1 (1995).

    Google Scholar 

  74. B. Mahato, S.K. Shee, T. Sahu, S.G. Chowdhury, P. Sahu, D.A. Porter, Acta Mater. 86, 69 (2015).

    Google Scholar 

  75. Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Sci. Rep. 7, 40704 (2017).

    Google Scholar 

  76. O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, J. Alloys Compd. 509, 6043 (2011).

    Google Scholar 

  77. O.N. Senkov, S.V. Senkova, D.B. Miracle, C. Woodward, Mater. Sci. Eng. A 565, 51 (2013).

    Google Scholar 

  78. Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, Z. Lu, Nature 563, 546 (2018).

    Google Scholar 

  79. H. Springer, M. Belde, D. Raabe, Mater. Des. 90, 1100 (2016).

    Google Scholar 

  80. H. Springer, M. Belde, D. Raabe, Mater. Sci. Eng. A 582, 235 (2013).

    Google Scholar 

  81. M. Belde, H. Springer, G. Inden, D. Raabe, Acta Mater. 86, 1 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dierk Raabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raabe, D., Li, Z. & Ponge, D. Metastability alloy design. MRS Bulletin 44, 266–272 (2019). https://doi.org/10.1557/mrs.2019.72

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.72

Navigation