Skip to main content
Log in

Application of computational tools in alloy design

  • Computational Design And Development Of Alloys
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Alloy design is critical to achieving the target performance of industrial components and products. In designing new alloys, there are multiple property requirements, including mechanical, environmental, and physical properties, as well as manufacturability and processability. Computational models and tools to predict properties from alloy compositions and to optimize compositions for multiple objectives are essential in enabling efficient, robust alloy design. Data-driven property models by machine learning (ML) are particularly useful in predicting physical properties with relatively simple dependence on composition, and in predicting complex properties that are too difficult for a physics-based model to achieve with desirable accuracy. In this article, we describe examples of ML applications to model coefficient of thermal expansion, creep and fatigue resistance in designing Ni-based superalloys, and optimization methodologies. We also discuss physics-based microstructure models that have been developed for optimizing heat-treatment conditions to achieve desired microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. T.M. Pollock, J.E. Allison, D.G. Backman, M.C. Boyce, M. Gersh, E.A. Holm, R. LeSar, M. Long, A.C. Powell IV, J.J. Schirra, D.D. Whitis, C. Woodward, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (National Research Council, National Academies Press, Washington, DC, 2008).

    Google Scholar 

  2. https://www.mgi.gov.

  3. T.M. Pollock, S. Tin, J. Propul. Power 22, 361 (2006).

    Google Scholar 

  4. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, UK, 2006).

    Google Scholar 

  5. R. Darolia, Int. Mater. Rev. (2018), doi.org/10.1080/09506608.2018.1516713.

  6. A. Suzuki, M.F.X. Gigliotti, B.T. Hazel, D.G. Konitzer, T.M. Pollock, Metall. Mater. Trans. A 41, 947 (2010).

    Google Scholar 

  7. S. Patil, S. Huang, M. Karadge, D. Konitzer, A. Suzuki, in Superalloys 2016, M. Hardy, Ed. (Wiley, Hoboken, NJ, 2016), p. 959.

    Google Scholar 

  8. R.C. Reed, T. Tao, N. Warnken, Acta Mater. 57, 5898 (2009).

    Google Scholar 

  9. R.E. Schafrik, Metall. Mater. Trans. B 47, 1505 (2016).

    Google Scholar 

  10. C.E. Guillaume, Nature 71, 134 (1904).

    Google Scholar 

  11. G. Bozzolo, M.F. del Grosso, H.O. Mosca, Mater. Lett. 62, 3975 (2008).

    Google Scholar 

  12. D. Kim, S.-L. Shang, Z.-K. Liu, Acta Mater. 60, 1846 (2012).

    Google Scholar 

  13. M. van Schilfgaarde, I.A. Abrikosov, B. Johansson, Nature 400, 46 (1999).

    Google Scholar 

  14. M.S.A. Karunaratne, S. Kyaw, A. Jones, R. Morrell, R.C. Thomson, J. Mater Sci. 51, 4213 (2016).

    Google Scholar 

  15. P.K. Sung, D.R. Poirier, Mater Sci. Eng. A 245, 135 (1998).

    Google Scholar 

  16. N. Bano, M. Nganbe, J. Mater. Eng. Perform. 22, 952 (2013).

    Google Scholar 

  17. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, É. Duchesnay, J. Mach. Learn. Res. 12, 2825 (2011).

    Google Scholar 

  18. S. Raschka, J. Open Source Softw. 3, 638 (2018).

    Google Scholar 

  19. A. Srivastava, A.K. Subramaniyan, L. Wang, ASME Turbo Expo 2015 (ASME, New York, 2015) p. GT2015–43693.

    Google Scholar 

  20. N.C. Kumar, A.K. Subramaniyan, L. Wang, ASME Turbo Expo 2012 (ASME, New York, 2012) p. GT2012–69058.

    Google Scholar 

  21. C. Shen, A. Suzuki, D.G. Konitzer, in Superalloys 2016, M. Hardy, Ed. (Wiley, Hoboken, NJ, 2016) p. 259.

    Google Scholar 

  22. C. Shen, in Modeling Long-Term Creep Performance for Welded Nickel-Base Superalloy Structures for Power Generation Systems (2017), doi:10.2172/1345084.

  23. C. Shen, in Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-Supercritical Coal Power Plants (2014), doi:10.2172/1134364.

  24. J.-C. Zhao, Prog. Mater. Sci. 51, 557 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akane Suzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, A., Shen, C. & Chennimalai Kumar, N. Application of computational tools in alloy design. MRS Bulletin 44, 247–251 (2019). https://doi.org/10.1557/mrs.2019.70

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.70

Navigation