Skip to main content
Log in

Robotics: Science preceding science fiction

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Robots and artificial machines have been captivating the public for centuries, depicted first as threats to humanity, then as subordinates and helpers. In the last decade, the booming exposure of humans to robots has fostered an increasing interest in soft robotics. By empowering robots with new physical properties, autonomous actuation, and sensing mechanisms, soft robots are making increasing impacts on areas such as health and medicine. At the same time, the public sympathy to robots is increasing. However, there is still a great need for innovation to push robotics toward more diverse applications. To overcome the major limitation of soft robots, which lies in their softness, strategies are being explored to combine the capabilities of soft robots with the performance of hard metallic ones by using composite materials in their structures. After reviewing the major specificities of hard and soft robots, paths to improve actuation speed, stress generation, self-sensing, and actuation will be proposed. Innovations in controlling systems, modeling, and simulation that will be required to use composite materials in robotics will be discussed. Finally, based on recently developed examples, the elements needed to progress toward a new form of artificial life will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. J. Verne, La Maison à Vapeur (1880).

  2. F. Lang, Metropolis (1927).

  3. S. Hayers, “The Cybernauts,” The Avengers, Season 4, Episode 3 (1965).

  4. G. Lucas, Star Wars Blizzard 1 (1977).

  5. J. Cameron, The Terminator (1984).

  6. G.A. Bekey, Knowl. Eng. Rev. 13, 143 (1998).

    Google Scholar 

  7. C. Frumento, E. Messier, V. Montero, Reporte, Inst. Politécnico Worcester 61 (2010).

  8. H. Ali, IOSR J. Mech. Civ. Eng. 2014, 58 (2014).

    Google Scholar 

  9. E. Prassler, K. Kosuge, “Domestic Robotics,” in Springer Handbook of Robotics (Springer, Berlin, 2008), p. 1253.

    Google Scholar 

  10. C. Marlin, J. Mass Commun. Q. 64, 544 (1987).

    Google Scholar 

  11. C. Williams, D. Hall, Big Hero 6 (2014).

  12. N. Hogan, H.I. Krebs, J. Charnnarong, P. Srikrishna, A. Sharon, Proc. IEEE Int. Work. Robot Hum. Commun. (1992), pp. 161–165.

  13. H. Miyazaki, Castle in the Sky (1986).

  14. N. Park, A Grand Day Out, Wallace and Gromit (1990).

  15. F. Ilievski, A.D. Mazzeo, R.F. Shepherd, X. Chen, G.M. Whitesides, Angew. Chem. Int. Ed. Engl. 50, 1890 (2011).

    Google Scholar 

  16. B. Bird, The Iron Giant (1999).

  17. M. Wehner, R.L. Truby, D.J. Fitzergerald, B. Mosadegh, G.M. Whitesides, J.A. Lewis, R.J. Wood, Nature 536, 451 (2016).

    Google Scholar 

  18. A. Stanton, Wall-E (2008).

  19. Z. Xie, G. Berseth, P. Clary, J. Hurst, M. van de Panne, “Feedback Control For Cassie With Deep Reinforcement Learning,” arXiv1803.05580 (2018).

  20. F. Kaplan, Int. J. Hum. Robot. 1, 465 (2004).

    Google Scholar 

  21. M.S. Kim, E.J. Kim, AI Soc. 28, 309 (2013).

    Google Scholar 

  22. R.M. Geraci, Relig. Stud. 42, 961 (2007).

    Google Scholar 

  23. A. Sadeghi, A. Mondini, B. Mazzolai, Soft Robot. 4, 211 (2017).

    Google Scholar 

  24. B.C. Datta, “Emotive Materials: Towards a Shared Language of the Meaning of Materials,” Master’s thesis, the Massachusetts Institute of Technology (2016).

  25. R.W. Fleming, Annu. Rev. Vis. Sci. 3, 365 (2017).

    Google Scholar 

  26. S.I. Rich, R.J. Wood, C. Majidi, Nat. Electron. 1, 102 (2018).

    Google Scholar 

  27. M. Sitti, Nature 458, 1121 (2009).

    Google Scholar 

  28. G.-Z. Yang, J. Bellingham, P.E. Dupont, P. Fischer, L. Floridi, R. Full, N. Jacobstein, V. Kumar, M. McNutt, R. Merrifield, N. Jacobstein, B.J. Nelson, M. Taddeo, R. Tylor, B. Scassellati, M. Veloso, Sci. Robot. 3, 1 (2018).

    Google Scholar 

  29. G.M. Whitesides, Angew. Chem. Int. Ed. Engl. 57, 4258 (2018).

    Google Scholar 

  30. D. Rus, M.T. Tolley, Nat. Rev. Mater. 3, 101 (2018).

    Google Scholar 

  31. L. Hines, K. Petersen, G.Z. Lum, M. Sitti, Adv. Mater. 29, 6007 (2017).

    Google Scholar 

  32. S. Abanovic, C.C. Bennett, W.-L. Chang, L. Huber, PARO Robot Affects Diverse Interaction Modalities in Group Sensory Therapy for Older Adults with Dementia, IEEE 13th Int. Conf. Rehabil. Robot. (Seattle, 2013).

  33. E. Acome, S.K. Mitchell, T.G. Morrissey, M.B. Emmett, C. Benjamin, M. King, M. Radakovitz, C. Keplinger, Science 359, 61 (2018).

    Google Scholar 

  34. N. Kellaris, V. Gopaluni Venkata, G.M. Smith, S.K. Mitchell, C. Keplinger, Sci. Robot. 3, 1 (2018).

    Google Scholar 

  35. S. Li, D.M. Vogt, D. Rus, R.J. Wood, Proc. Natl. Acad. Sci. U.S.A. 114, 13132 (2017).

    Google Scholar 

  36. H. Banerjee, M. Suhail, H. Ren, Biomimetics 3, 1 (2018).

    Google Scholar 

  37. L. Ionov, Mater. Today 17, 494 (2014).

    Google Scholar 

  38. J. Zheng, P. Xiao, X. Le, W. Lu, P. Theato, C. Ma, B. Du, J. Zhang, Y. Huang, T. Chen, J. Mater. Chem. C 6, 1320 (2018).

    Google Scholar 

  39. H. Yuk, S. Lin, C. Ma, M. Takaffoli, N.X. Fang, X. Zhao, Nat. Commun. 8, 1 (2017).

    Google Scholar 

  40. M. Cianchetti, C. Laschi, A. Menciassi, P. Dario, Nat. Rev. Mater. 3, 143 (2018).

    Google Scholar 

  41. A. Chortos, J. Liu, Z. Bao, Nat. Mater. 15, 937 (2016).

    Google Scholar 

  42. C.M. Boutry, A. Nguyen, Q.O. Lawal, A. Chortos, S. Rondeau-Gagné, Z. Bao, Adv. Mater. 27, 6954 (2015).

    Google Scholar 

  43. J.Z. Gul, M. Sajid, M.M. Rehman, G.U. Siddiqui, I. Shah, K.-H. Kim, J.-W. Lee, K.H. Choi, Sci. Technol. Adv. Mater. 19, 243 (2018).

    Google Scholar 

  44. A. Rafsanjani, Y. Zhang, B. Liu, S.M. Rubinstein, K. Bertoldi, Sci. Robot. 3, 1 (2018).

    Google Scholar 

  45. J.U. Schmied, H. Le Ferrand, P. Ermanni, A.R. Studart, A.F. Arrieta, Bioinspir. Biomim. 12, 1 (2017).

    Google Scholar 

  46. T. Ogasawara, S. Hanamitsu, T. Ogawa, S.-Y. Moon, Y. Shimamura, Y. Inoue, Adv. Compos. Mater. 26, 157 (2017).

    Google Scholar 

  47. M. Schaffner, J.A. Faber, L. Pianegonda, P.A. Ruhs, F. Coulter, A.R. Studart, Nat. Commun. 9, 1 (2018).

    Google Scholar 

  48. R.V. Martinez, J.L. Branch, C.R. Fish, L. Jin, R.F. Shepherd, R.M.D. Nunes, Z. Suo, G.M. Whitesides, Adv. Mater. 25, 205 (2013).

    Google Scholar 

  49. G. Agarwal, N. Besuchet, B. Audergon, J. Paik, Sci. Rep. 6, 1 (2016).

    Google Scholar 

  50. K. Kaneto, J. Phys. Conf. Ser. 704, 1 (2016).

    Google Scholar 

  51. X. Li, X. Cai, Y. Gao, M.J. Serpe, J. Mater. Chem. B 5, 2804 (2017).

    Google Scholar 

  52. Y. Jin, Y. Shen, J. Yin, J. Qian, Y. Huang, ACS Appl. Mater. Interfaces 10, 10461 (2018).

    Google Scholar 

  53. B.G. Levi, Phys. Today 52, 17 (1999).

    Google Scholar 

  54. M. Grossard, IFAC-PapersOnLine 28, 2176 (2015).

    Google Scholar 

  55. P.M. Larochelle, J.M. McCarthy, J.E. Bobrow, Robot. Comput. Integr. Manuf. 10, 437 (1993).

    Google Scholar 

  56. S.W. Kim, Bioinspir. Biomim. 9, 1 (2014).

    Google Scholar 

  57. M.D. Lima, N. Li, M.J. de Andrade, S. Fang, J. Oh, G.M. Spinks, M.E. Kozlov, C.S. Haines, D. Suh, J. Foroughi, S.J. Kim, Y. Chen, T. Ware, M.K. Shin, L.D. Machado, A.F. Fonseca, J.D.W. Madden, W.E. Voit, D.S. Galvao, R.H. Baughman, Science 338, 928 (2012).

    Google Scholar 

  58. A.E. Moehlenpah, O. Ishai, A.T. Dibenedetto, J. Appl. Polym. Sci. 13, 1231 (1969).

    Google Scholar 

  59. G. Rudko, A. Kovalchuk, V. Fediv, W.M. Chen, I.A. Buyanova, Nanoscale Res. Lett. 10, 4 (2015).

    Google Scholar 

  60. V. Nguyen, J. Hao, W. Wang, Polymers 10, 831 (2018).

    Google Scholar 

  61. R.A. Chowdhury, M.V. Hosur, M. Nuruddin, A. Tcherbi-Narteh, A. Kumar, V. Boddu, S. Jeelani, J. Mater. Res. Technol. 4, 33 (2015).

    Google Scholar 

  62. Y.C. Yuan, X.J. Ye, M.Z. Rong, M.Q. Zhang, G.C. Yang, J.Q. Zhao, ACS Appl. Mater. Interfaces 3, 4487 (2011).

    Google Scholar 

  63. P. Song, Z. Xu, M.S. Dargusch, Z.-G. Chen, H. Wang, Q. Guo, Adv. Mater. 29, 1 (2017).

    Google Scholar 

  64. R. Libanori, R.M. Erb, A. Reiser, H. Le Ferrand, M.J. Suess, R. Spolenak, A.R. Studart, Nat. Commun. 3, 1 (2012).

    Google Scholar 

  65. L. Santo, F. Quadrini, A. Accettura, W. Villadei, Procedia Eng. 88, 42 (2014).

    Google Scholar 

  66. A. Lendlein, Sci. Robot. 3, 1 (2018).

    Google Scholar 

  67. T. Sebastian, T. Lusiola, F. Clemens, Smart Mater. Struct. 26, 1 (2017).

    Google Scholar 

  68. A.S. Gladman, E.A. Matsumoto, R.G. Nuzzo, L. Mahadevan, J.A. Lewis, Nat. Mater. 15, 413 (2016).

    Google Scholar 

  69. W. Hu, G.Z. Lum, M. Mastrangeli, M. Sitti, Nature 554, 81 (2018).

    Google Scholar 

  70. G.Z. Lum, Z. Ye, X. Dong, H. Marvi, O. Erin, W. Hu, M. Sitti, Proc. Natl. Acad. Sci. U.S.A. 113, 6007 (2016).

    Google Scholar 

  71. K.S. Riley, H. Le Ferrand, A.F. Arrieta, Smart Mater. Struct. 27, 1 (2018).

    Google Scholar 

  72. A.F. Arrieta, S.A. Neild, D.J. Wagg, J. Sound Vib. 330, 3424 (2011).

    Google Scholar 

  73. Z. Yan, F. Zhang, J. Wang, F. Liu, X. Guo, K. Nan, Q. Lin, M. Gao, D. Xiao, Y. Shi, Y. Qiu, H. Luan, J.H. Kim, Y. Wang, H. Luo, M. Han, Y. Huang, Y. Zhang, J.A. Rogers, Adv. Funct. Mater. 26, 2629 (2018).

    Google Scholar 

  74. M.A. McEvoy, N. Correll, Science 347, 1 (2015).

    Google Scholar 

  75. J.J. Martin, M.S. Riederer, D. Krebs, R.M. Erb, Soft Matter 11, 400 (2014).

    Google Scholar 

  76. T.M. Llewellyn-Jones, B.W. Drinkwater, R.S. Trask, Smart Mater. Struct. 25, 1 (2016).

    Google Scholar 

  77. D. Kokkinis, M. Schaffner, A.R. Studart, Nat. Commun. 6, 1 (2015).

    Google Scholar 

  78. J.J. Martin, B.E. Fiore, R.M. Erb, Nat. Commun. 6, 1 (2015).

    Google Scholar 

  79. D. Kokkinis, F. Bouville, A.R. Studart, Adv. Mater. 30, 1 (2018).

    Google Scholar 

  80. H. Le Ferrand, J. Mater. Res. 1–25 (2018).

  81. W. Aljohani, M.W. Ullah, X. Zhang, G. Yang, Int. J. Biol. Macromol. 107, 261 (2018).

    Google Scholar 

  82. M. Schaffner, P.A. Rühs, F. Coulter, S. Kilcher, A.R. Studart, Sci. Adv. 3, 1 (2017).

    Google Scholar 

  83. L. Ricotti, B. Trimmer, A.W. Feinberg, R. Raman, K.K. Parker, R. Bashir, M. Sitti, S. Martle, P. Dario, A. Menciassi, Sci. Rob. 2, 1 (2017).

    Google Scholar 

  84. C. Zhang, W. Wang, N. Xi, Y. Wang, L. Liu, Engineering 4, 452 (2018).

    Google Scholar 

  85. A.W. Feinberg, Annu. Rev. Biomed. Eng. 17, 243 (2015).

    Google Scholar 

  86. C. Zhang, W. Wang, N. Xi, Y. Wang, L. Liu, IEEE 10th Int. Conf. Nano/Micro Eng. Mol. Syst. 296 (2015).

  87. E.W. Hawkes, L.H. Blumenschein, J.D. Greer, A.M. Okamura, Sci. Robot. 2, 1 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hortense Le Ferrand.

Additional information

This article is an invited contribution from the MRS Bulletin Postdoctoral Publication Prize given to Hortense Le Ferrand, Nanyang Technological University, at the 2018 MRS Fall Meeting in Boston, Mass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Ferrand, H. Robotics: Science preceding science fiction. MRS Bulletin 44, 295–301 (2019). https://doi.org/10.1557/mrs.2019.68

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.68

Navigation