Skip to main content
Log in

Alloy design for mechanical properties: Conquering the length scales

  • Computational Design And Development Of Alloys
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Predicting the structural response of advanced multiphase alloys and understanding the underlying microscopic mechanisms that are responsible for it are two critically important roles that modeling plays in alloy development. The demonstration of superior properties of an alloy, such as high strength, creep resistance, high ductility, and fracture toughness, is not sufficient to secure its use in widespread applications. Still, a good model is needed to take measurable alloy properties, such as microstructure and chemical composition, and forecast how the alloy will perform in specified mechanical deformation conditions, including temperature, time, and rate. Here, we highlight recent achievements using multiscale modeling in elucidating the coupled effects of alloying, microstructure, and mechanism dynamics on the mechanical properties of polycrystalline alloys. Much of the understanding gained by these efforts relies on the integration of computational tools that vary over many length scales and time scales, from first-principles density functional theory, atomistic simulation methods, dislocation and defect theory, micromechanics, phase-field modeling, single crystal plasticity, and polycrystalline plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. M.F. Ashby, D. Cebon, J. Phys. IV 3, C7–1 (1993).

    Google Scholar 

  2. E.O. Hall, Proc. Phys. Soc. Lond. 64, 747 (1951).

    Google Scholar 

  3. N.J. Petch, J. Iron Steel Inst. Lond. 173, 25 (1953).

    Google Scholar 

  4. W. Hume-Rothery, H.M. Powell, Z. Kristallogr. 91, 23 (1935).

    Google Scholar 

  5. J. Nie, Y. Wang, MRS Bull. 44 (4), 281 (2019).

    Google Scholar 

  6. A. Rodríguez-Veiga, B. Bellón, I. Papadimitriou, G. Esteban-Manzanares, I. Sabirov, J. Llorca, J. Alloys Compd. 757, 504 (2018).

    Google Scholar 

  7. H. Liu, I. Papadimitriou, F.X. Lin, J. Llorca, Acta Mater. 167, 121 (2019).

    Google Scholar 

  8. H. Liu, B. Bellón, J. Llorca, Acta Mater. 132, 611 (2017).

    Google Scholar 

  9. G. Esteban-Manzanares, E. Martínez, J. Segurado, L. Capolungo, J. Llorca, Acta Mater. 162, 189 (2019).

    Google Scholar 

  10. U.F. Kocks, Prog. Mater. Sci. 19, 1 (1975).

    Google Scholar 

  11. R. Santos-Güemes, G. Esteban-Manzanares, I. Papadimitriou, J. Segurado, L. Capolungo, J. Llorca, J. Mech. Phys. Solids 118, 228 (2018).

    Google Scholar 

  12. Y. Koizumi, T. Nukaya, S. Takeshi, S. Suzuki, S. Kurosu, Y. Li, H. Matsumoto, K. Sato, Y. Tanaka, A. Chiba, Acta Mater. 60, 2901 (2012).

    Google Scholar 

  13. G.B. Viswanathan, R. Shi, A. Genc, V.A. Vorontsov, L. Kovarik, C.M.F. Rae, M.J. Mills, Scr. Mater. 94, 5 (2015).

    Google Scholar 

  14. Y. Rao, T.M. Smith, M.J. Mills, M. Ghazisaeidi, Acta Mater. 148, 173 (2018).

    Google Scholar 

  15. P. Kontis, Z. Li, D.M. Collins, J. Cormier, D. Raabe, B. Gault, Scr. Mater. 145, 76 (2018).

    Google Scholar 

  16. Y. Wang, J. Li, Acta Mater. 58, 1212 (2010).

    Google Scholar 

  17. I.J. Beyerlein, A. Hunter, Philos. Trans. R. Soc. Lond. A 374, 20150166 (2016).

    Google Scholar 

  18. J.R. Mianroodi, A. Hunter, I.J. Beyerlein, B. Svendsen, J. Mech. Phys. Solids 95, 719 (2016).

    Google Scholar 

  19. R. Shi, D.P. McAllister, N. Zhou, A.J. Detor, R. DiDomizio, M.J. Mills, Y. Wang, Acta Mater. 164, 220 (2019).

    Google Scholar 

  20. J.R. Mianroodi, P. Shanthraj, P. Kontis, B. Gault, D. Raabe, B. Svendsen, under review (2018).

  21. B. Svendsen, P. Shanthraj, D. Raabe, J. Mech. Phys. Solids 112, 619 (2018).

    Google Scholar 

  22. L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis, Y. Bréechet, Solid State Phenom. 23, 455 (1992).

    Google Scholar 

  23. N.M. Ghoniem, S.-H. Tong, L.Z. Sun, Phys. Rev. B Condens. Matter 61, 913 (2000).

    Google Scholar 

  24. H.M. Zbib, M. Rhee, J.P. Hirth, Int. J. Plast. 18, 1133 (2002).

    Google Scholar 

  25. D. Weygand, L.H. Friedman, E. Van der Giessen, A. Needleman, Model. Simul. Mater. Sci. Eng. 10, 437 (2002).

    Google Scholar 

  26. J.A. El-Awady, H. Fan, A.M. Hussein, in Multiscale Materials Modeling for Nanomechanics, C. Weinberger, G. Tucker, Eds. (Springer, Cham, Switzerland, 2016), pp. 337–371.

    Google Scholar 

  27. A.M. Hussein, S.I. Rao, M.D. Uchic, T.A. Parthasarathy, J.A. El-Awady, J. Mech. Phys. Solids 99, 146 (2017).

    Google Scholar 

  28. H. Yang, Z. Li, M. Huang, Comput. Mater. Sci. 75, 52 (2013).

    Google Scholar 

  29. M. Huang, L. Zhao, J. Tong, Int. J. Plast. 28, 141 (2012).

    Google Scholar 

  30. S. Gao, M. Fivel, A. Ma, A. Hartmaier, J. Mech. Phys. Solids 76, 276 (2015).

    Google Scholar 

  31. C.N. Tomé, I.J. Beyerlein, R.J. McCabe, J. Wang, in Engineering (ICME) for Metals: Reinvigorating Engineering Design with Science, M.F. Horstemeyer, Ed. (Wiley, Hoboken, NJ, 2018), pp. 283–336.

    Google Scholar 

  32. N.J. Kim, Mater. Sci. Technol. 30, 1925 (2014).

    Google Scholar 

  33. M.K. Kulekci, Int. J. Adv. Manuf. Technol. 39, 851 (2008).

    Google Scholar 

  34. B. Suh, M.S. Shim, K.S. Shin, N.J. Kim, Scr. Mater 84, 1 (2014).

    Google Scholar 

  35. P.G. Partridge, Metall. Rev. 12, 169 (1967).

    Google Scholar 

  36. M.H. Yoo, Metall. Trans. A 124, 409 (1981).

    Google Scholar 

  37. M. Arul Kumar, I.J. Beyerlein, C.N. Tomé, J. Alloys Compd. 695, 1488 (2017).

    Google Scholar 

  38. M. Lentz, M. Klaus, R.S. Coelho, N. Schaefer, F. Schmack, W. Reimers, B. Clasuen, Metall. Mater. Trans. 45A, 5721 (2014).

    Google Scholar 

  39. H. Qiao, S.R. Agnew, P.D. Wu, Int. J. Plast. 65, 61 (2015).

    Google Scholar 

  40. S. Xu, T. Liu, H. Chen, Z. Miao, Z. Zhang, W. Zeng, Mater. Sci. Eng. A 565, 96 (2013).

    Google Scholar 

  41. W. Muhammad, M. Mohammadi, J. Kang, R.K. Mishra, K. Inal, Int. J. Plast. 70, 30 (2015).

    Google Scholar 

  42. P. Zhou, E. Beeh, H.E. Friedrich, J. Mater. Eng. Perform. 25, 853 (2013).

    Google Scholar 

  43. Z. Zachariah, S.S.V. Tatiparti, S.K. Mishra, N. Ramakrishnan, U. Ramamurty, Mater. Sci. Eng. A 572, 8 (2013).

    Google Scholar 

  44. S. Yi, J. Bolen, F. Heineman, D. Letzig, Acta Mater. 58, 592 (2010).

    Google Scholar 

  45. D.L. McDowell, in Computational Materials System Design, D. Shin, J. Saal, Eds. (Springer, Cham, Switzerland, 2018), pp. 1–25.

    Google Scholar 

  46. S. Keshavarz, S. Ghosh, Int. J. Solids Struc. 55, 17 (2015).

    Google Scholar 

  47. A.A. Luo, Int. Mater. Rev. 49, 13 (2004).

    Google Scholar 

  48. B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142, 283 (2018).

    Google Scholar 

  49. A. Bagri, G. Weber, J.C. Stinville, W.C. Lenthe, T.M. Pollock, C. Woodward, S. Ghosh, Metall. Mater. Trans. A 49, 5727 (2018).

    Google Scholar 

  50. M. Pinz, G. Weber, W.C. Lenthe, M.D. Uchic, T.M. Pollock, S. Ghosh, Acta Mater. 157, 245 (2018).

    Google Scholar 

  51. I.J. Beyerlein, M. Arul Kumar, in Handbook of Materials Modeling, W. Andreoni, S. Yip, Eds. (Springer Nature, Cham, Switzerland, 2018), pp. 1–36.

    Google Scholar 

  52. B.A. Simkin, M.A. Crimp, T.R. Bieler, Intermetallics 15, 55 (2007).

    Google Scholar 

  53. F. Yang, S.M. Yin, S.X. Li, Z.F. Zhang, Mater. Sci. Eng. A 491, 131 (2008).

    Google Scholar 

  54. S.M. Yin, F. Yang, X.M. Yang, S.D. Wu, S.X. Li, G.Y. Li, Mater. Sci. Eng. A 494, 397 (2008).

    Google Scholar 

  55. M. Lentz, M. Risse, N. Schaefer, W. Reimers, I.J. Beyerlein, Nat. Commun. 7, 11068 (2016).

    Google Scholar 

  56. J. Cheng, S. Ghosh, J. Mech. Phys. Solids 99, 512 (2017).

    Google Scholar 

  57. H. Abdolvand, A.J. Wilkinson, Acta Mater. 105, 219 (2016).

    Google Scholar 

  58. M. Ardeljan, I.J. Beyerlein, M. Knezevic, Int. J. Plast. 99, 81 (2017).

    Google Scholar 

  59. M. Arul Kumar, I.J. Beyerlein, C.N. Tomé, Acta Mater. 116, 143 (2016).

    Google Scholar 

  60. M.A. Kumar, I.J. Beyerlein, R.A. Lebensohn, C.N. Tome, Mater. Sci. Eng. A 706, 295 (2017).

    Google Scholar 

  61. M. Cottura, B. Appolaire, A. Finel, Y. Le Bouar, J. Mech. Phys. Solids 94, 473 (2016).

    Google Scholar 

  62. R. Wu, S. Sandfeld, J. Alloys Compd. 703, 389 (2017).

    Google Scholar 

  63. R. Wu, M. Zaiser, S. Sandfeld, Int. J. Plast. 95, 142 (2017).

    Google Scholar 

  64. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227 (2016).

    Google Scholar 

  65. T. Xiong, Y. Zhou, J. Pang, I.J. Beyerlein, X. Ma, S. Zheng, Mater. Sci. Eng. A 720, 231 (2018).

    Google Scholar 

  66. R. Yuan, I.J. Beyerlein, C. Zhou, Acta Mater. 110, 8 (2016).

    Google Scholar 

  67. I.J. Beyerlein, X. Zhang, A. Misra, Annu. Rev. Mater. Res. 44, 329 (2014).

    Google Scholar 

  68. I.J. Beyerlein, M.J. Demkowicz, A. Misra, B.P. Uberuaga, Prog. Mater. Sci. 74, 125 (2015).

    Google Scholar 

  69. http://www.prisms-center.org.

  70. https://www.questek.com.

  71. https://nanohub.org.

  72. https://matin.gatech.edu.

  73. https://magics.usc.edu.

  74. https://cms3.tamu.edu.

  75. http://www.nersc.gov.

  76. https://www.xsede.org.

  77. https://hpcinnovationcenter.llnl.gov.

  78. https://usrc.lanl.gov.

  79. https://www.exascaleproject.org.

  80. The Minerals, Metals & Materials Society (TMS), Modeling Across Scales: A Roadmapping Study for Connecting Materials Models and Simulations Across Length and Time Scales (Warrendale, PA, 2015).

    Google Scholar 

  81. The Minerals, Metals & Materials Society (TMS), Advanced Computation and Data in Materials and Manufacturing: Core Knowledge Gaps and Opportunities (Pittsburgh, 2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene J. Beyerlein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyerlein, I.J., Xu, S., Llorca, J. et al. Alloy design for mechanical properties: Conquering the length scales. MRS Bulletin 44, 257–265 (2019). https://doi.org/10.1557/mrs.2019.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.67

Navigation