Skip to main content
Log in

Porphyrin-based nanocomposites for tumor photodynamic therapy

  • Self-Assembled Porphyrin and Macrocycle Derivatives
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Porphyrins and their associated derivatives have been widely used as photosensitizers for photodynamic therapy (PDT) of tumors. To overcome the limitations of porphyrin photosensitizers in PDT, the marriage of porphyrins and nanotechnology offers a new perspective to improve the efficacy and safety of porphyrin-based PDT. To date, various organic and inorganic nanoparticles have been developed for porphyrin delivery for high payload photosensitizers, protection from premature release of photosensitizers, and tumor-selective targeting. In this article, we summarize the strategies for porphyrin photosensitizer delivery, including encapsulation, covalent conjugation, self-assembly for PDT, and characterization methods of singlet oxygen (1O2) generation. We focus on the summarized strategies of improving cancer PDT efficacy by nanotechnology. Finally, the challenges and outlook for porphyrin-based nanocomposites-mediated PDT are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. J.J. Liu, Q. Chen, L.Z. Feng, Z. Liu, Nano Today 21, 55 (2018).

    Google Scholar 

  2. A.G. Denkova, R.M. de Kruijff, P. Serra-Crespo, Adv. Healthc. Mater. 7, 1701211 (2018).

    Google Scholar 

  3. S.S. Lucky, K.C. Soo, Y. Zhang, Chem. Rev. 115, 1990 (2015).

    Google Scholar 

  4. J. Park, Q. Jiang, D.W. Feng, L.Q. Mao, H.C. Zhou, J. Am. Chem. Soc. 138, 3518 (2016).

    Google Scholar 

  5. X.L. Liang, X.D. Li, L.J. Jing, X.L. Yue, Z.F. Dai, Biomaterials 35, 6379 (2014).

    Google Scholar 

  6. K.D. Lu, C.B. He, N.N. Guo, C. Chan, K.Y. Ni, R.R. Weichselbaum, W.B. Lin, J. Am. Chem. Soc. 138, 12502 (2016).

    Google Scholar 

  7. Y.M. Zhou, X.L. Liang, Z.F. Da, Nanoscale 8, 12394 (2016).

    Google Scholar 

  8. T. Zhao, H. Wu, S.Q. Yao, Q.-H. Xu, G.Q. Xu, Langmuir 26, 14937 (2010).

    Google Scholar 

  9. K. Lu, C. He, W. Lin, J. Am. Chem. Soc. 136, 16712 (2014).

    Google Scholar 

  10. L. Yan, J. Miller, M. Yuan, J.F. Liu, T.M. Busch, A. Tsourkas, Z.L. Cheng, Biomacromolecules 18, 1836 (2017).

    Google Scholar 

  11. Q. Feng, J. Wang, H. Song, L.G. Zhuo, G.Q. Wang, W. Liao, Y. Feng, H.Y. Wei, Y. Chen, Y.C. Yang, X. Yang, J. Drug Deliv. Sci. Technol. 47, 137 (2018).

    Google Scholar 

  12. L.J. Jing, X.L. Liang, X.D. Li, L. Lin, Y.B. Yang, X.L. Yue, Z.F. Dai, Theranostics 4, 858 (2014).

    Google Scholar 

  13. M.K.K. Oo, Y.M. Yang, Y. Hu, M. Gomez, H. Du, H.J. Wang, ACS Nano 6, 1939 (2012).

    Google Scholar 

  14. H.W. Gu, K.M. Xu, Z.M. Yang, C.K. Chang, B. Xu, Chem. Commun. 34, 4270 (2005).

    Google Scholar 

  15. Y.J. You, X.L. Liang, T.H. Yin, M. Chen, C. Qiu, C. Gao, X.Y. Wang, Y.J. Mao, E.Z. Qu, Z.F. Dai, R.Q. Zheng, Theranostics 8, 1665 (2018).

    Google Scholar 

  16. J. Wang, Y. Zhong, X. Wang, W. Yang, F. Bai, B. Zhang, L. Alarid, K. Bian, H. Fan, Nano Lett. 17, 6916 (2017).

    Google Scholar 

  17. D. Wang, L. Niu, Z.-Y. Qiao, D.-B. Cheng, J. Wang, Y. Zhong, F. Bai, H. Wang, H. Fan, ACS Nano 12, 3796 (2018).

    Google Scholar 

  18. A. Roby, S. Erdogan, V.P. Torchilin, Eur. J. Pharm. Biopharm. 62, 235 (2006).

    Google Scholar 

  19. O.J. Fakayode, C.A. Kruger, S.P. Songca, H. Abrahamse, O.S. Oluwafemi, Mater. Sci. Eng. C 92, 737 (2018).

    Google Scholar 

  20. M. Niedre, M.S. Patterson, B.C. Wilson, Photochem. Photobiol. 75, 382 (2002).

    Google Scholar 

  21. J.T. Ping, H.S. Peng, J.L. Qin, F.T. You, Y.Q. Wang, G.X. Chen, M. Song, Microchim. Acta 185, 1 (2018).

    Google Scholar 

  22. Y. Lion, M. Delmelle, A. Vandevorst, Nature 263, 442 (1976).

    Google Scholar 

  23. J. Ge, M. Lan, B. Zhou, W. Liu, L. Guo, H. Wang, Q. Jia, G. Niu, X. Huang, H. Zhou, X. Meng, P. Wang, C.-S. Lee, W. Zhang, X. Han, Nat. Commun. 5, 4596 (2014).

    Google Scholar 

  24. W. Fan, W. Bu, B. Shen, Q. He, Z. Cui, Y. Liu, X. Zheng, K. Zhao, J. Shi, Adv. Mater. 27, 4155 (2015).

    Google Scholar 

  25. M. Nakano, K. Sugioka, Y. Ushijima, T. Goto, Anal. Biochem. 159, 363 (1986).

    Google Scholar 

  26. A.G. Zhou, Y.C. Wei, B.Y. Wu, Q. Chen, D. Xing, Mol. Pharm. 9, 1580 (2012).

    Google Scholar 

  27. J. Shan, S.J. Budijono, G. Hu, N. Yao, Y. Kang, Y. Ju, R.K. Prud’homme, Adv. Funct. Mater. 21, 2488 (2011).

    Google Scholar 

  28. J. Hu, Y.A. Tang, A.H. Elmenoufy, H.B. Xu, Z. Cheng, X.L. Yang, Small 11, 5860 (2015).

    Google Scholar 

  29. A. Kamkaew, C. Feng, Y. Zhan, R.L. Majewski, W. Cai, ACS Nano 10, 3918 (2016)

  30. X.J. Zou, M.Z. Yao, L. Ma, M. Hossu, X.M. Han, P. Juzenas, W. Chen, Nanomedicine 9, 2339 (2014).

    Google Scholar 

  31. D. Tao, L. Feng, Y. Chao, C. Liang, X. Song, H. Wang, K. Yang, Z. Liu, Adv. Funct. Mater. 28, 1804901 (2018).

    Google Scholar 

  32. Y. Zhang, R.M. Wang, C.Q. Liu, Z.Z. Wang, L.H. Kang, Y.Y. Huang, K. Dong, J.S. Ren, X.G. Qu, ACS Nano 12, 651 (2018).

    Google Scholar 

  33. R. Weissleder, Science 312, 1168 (2006).

    Google Scholar 

  34. M.A. Pysz, S.S. Gambhir, J.K. Willmann, Clin. Radiol. 65, 500 (2010).

    Google Scholar 

  35. A. Srivatsan, S.V. Jenkins, M. Jeon, Z.J. Wu, C. Kim, J.Y. Chen, R.K. Theranostics 4, 163 (2014).

  36. L. Cheng, D. Jiang, A. Kamkaew, H.F. Valdovinos, H.J. Im, L. Feng, C.G. England, S. Goel, T.E. Barnhart, Z. Liu, Adv. Funct. Mater. 27, 1702928 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weitao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Zhang, B. Porphyrin-based nanocomposites for tumor photodynamic therapy. MRS Bulletin 44, 189–194 (2019). https://doi.org/10.1557/mrs.2019.42

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.42

Navigation