Skip to main content

Advertisement

Log in

Porphyrin-based photocatalysts for hydrogen production

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Photocatalytic hydrogen production from water is a facile and clean approach to convert rich solar energy into chemical fuel. Developing efficient and robust catalysts to accelerate water-splitting speed is key. Porphyrins exist widely in green plants and are a key photosensitizer to absorb and transfer light energy to other parts of the photosynthesis system of plants. They are considered an ideal model to construct artif cial photocatalysts for hot-carrier-mediated hydrogen production. This article discusses recent achievements in constructing porphyrin-based photocatalysts for hydrogen production, including porphyrin molecules, self-assembled porphyrins, metal-organic frameworks, conjugated porphyrin polymers, and hybrid nanomaterial-based photocatalysts. The design and synthesis principles, structure-property relationships, as well as urgent issues to be solved in the future for every type of photocatalyst are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Y. Wang, H. Suzuki, J. Xie, O. Tomita, D.J. Martin, M. Higashi, D. Kong, R. Abe, J. Tang, Chem. Rev. 118, 5201 (2018).

    Article  CAS  Google Scholar 

  2. Q. Wang, K. Domen, Chem. Rev. (forthcoming), doi:10.1021/acs.chemrev.9b00201.

  3. P. Pachfule, A. Acharjya, J. Roeser, T. Langenhahn, M. Schwarze, R. Schomäcker, A. Thomas, J. Schmidt, J. Am. Chem. Soc. 140, 1423 (2018).

    Article  CAS  Google Scholar 

  4. X. Wang, L. Chen, S.Y. Chong, M.A. Little, Y. Wu, W.H. Zhu, R. Clowes, Y. Yan, M.A. Zwijnenburg, R.S. Sprick, A.I. Cooper, Nat. Chem. 10, 1180 (2018).

    Article  CAS  Google Scholar 

  5. M.Z. Rahman, C.B. Mullins, Acc. Chem. Res. 52, 248 (2019).

    Article  CAS  Google Scholar 

  6. C. Zhang, P. Chen, H. Dong, Y. Zhen, M. Liu, W. Hu, Adv. Mater. 27, 5379 (2015).

    Article  CAS  Google Scholar 

  7. Q. Li, N. Zhao, F. Bai, MRS Bull. 44 (3), 172 (2019).

    Article  Google Scholar 

  8. Y.B. Jiang, Z. Sun, MRS Bull. 44 (3), 167 (2019).

    Article  CAS  Google Scholar 

  9. W. Wei, F. Bai, H. Fan, iScience 11, 272 (2019).

    Article  CAS  Google Scholar 

  10. Y. Zhong, J. Wang, Y. Tian, MRS Bull. 44 (3), 183 (2019).

    Article  Google Scholar 

  11. W. Wei, J. Sun, H. Fan, MRS Bull. 44 (3), 178 (2019).

    Article  Google Scholar 

  12. N. Queyriaux, E. Giannoudis, C.D. Windle, S. Roy, J. Pécaut, A.G. Coutsolelos, V. Artero, M. Chavarot-Kerlidou, Sustain. Energy Fuels 2, 553 (2018).

    Article  CAS  Google Scholar 

  13. M. Zhu, Y. Dong, Y. Du, Z. Mou, J. Liu, P. Yang, X. Wang, Chem. Eur. J. 18, 4367 (2012).

    Article  CAS  Google Scholar 

  14. G.B. Bodedla, L. Li, Y. Che, Y. Jiang, J. Huang, J. Zhao, X. Zhu, Chem. Commun. 54, 11614 (2018).

    Article  CAS  Google Scholar 

  15. P. Lang, J. Habermehl, S.I. Troyanov, S. Rau, M. Schwalbe, Chem. Eur. J. 24, 3225 (2018).

    Article  CAS  Google Scholar 

  16. M. Natali, R. Argazzi, C. Chiorboli, E. Iengo, F. Scandola, Chem. Eur. J. 19, 9261 (2013).

    Article  CAS  Google Scholar 

  17. E. Nikoloudakis, K. Karikis, J. Han, C. Kokotidou, A. Charisiadis, F. Folias, A.M. Douvas, A. Mitraki, G. Charalambidis, X. Yan, A.G. Coutsolelos, Nanoscale 11, 3557 (2019).

    Article  CAS  Google Scholar 

  18. J. Wang, Y. Zhong, L. Wang, N. Zhang, R. Cao, K. Bian, L. Alarid, R.E. Haddad, F. Bai, H. Fan, Nano Lett. 16, 6523 (2016).

    Article  CAS  Google Scholar 

  19. Y. Zhong, J. Wang, R. Zhang, W. Wei, H. Wang, X. Lü, F. Bai, H. Wu, R. Haddad, H. Fan, Nano Lett. 14, 7175 (2014).

    Article  CAS  Google Scholar 

  20. J. Wang, Y. Zhong, X. Wang, W. Yang, F. Bai, B. Zhang, L. Alarid, K. Bian, H. Fan, Nano Lett. 17, 6916 (2017).

    Article  CAS  Google Scholar 

  21. D. Wang, L. Niu, Z.Y. Qiao, D.B. Cheng, J. Wang, Y. Zhong, F. Bai, H. Wang, H. Fan, ACS Nano 12, 3796 (2018).

    Article  CAS  Google Scholar 

  22. N. Zhang, L. Wang, H. Wang, R. Cao, J. Wang, F. Bai, H. Fan, Nano Lett. 18, 560 (2018).

    CAS  Google Scholar 

  23. Y. Zhong, Z. Wang, R. Zhang, F. Bai, H. Wu, R. Haddad, H. Fan, ACS Nano 8, 827 (2014).

    Article  CAS  Google Scholar 

  24. Y. Liu, L. Wang, H. Feng, X. Ren, J. Ji, F. Bai, H. Fan, Nano Lett. 19, 2614 (2019).

    Article  CAS  Google Scholar 

  25. A. Fateeva, P.A. Chater, C.P. Ireland, A.A. Tahir, Y.Z. Khimyak, P.V. Wiper, J.R. Darwent, M.J. Rosseinsky, Angew. Chem. Int. Ed. Engl. 51, 1 (2012).

    Article  Google Scholar 

  26. X. Fang, Q. Shang, Y. Wang, L. Jiao, T. Yao, Y. Li, Q. Zhang, Y. Luo, H. Jiang, Adv. Mater. 30, 1705112 (2018).

    Article  Google Scholar 

  27. T. He, S. Chen, B. Ni, Y. Gong, Z. Wu, L. Song, L. Gu, W. Hu, X. Wang, Angew. Chem. Int. Ed. Engl. 57, 3493 (2018).

    Article  CAS  Google Scholar 

  28. G. Lan, Y.Y. Zhu, S.S. Veroneau, Z. Xu, D. Micheroni, W. Lin, J. Am. Chem. Soc. 140, 5326 (2018).

    Article  CAS  Google Scholar 

  29. K.C. Ranjeesh, L. George, V.C. Wakchaure, Goudappagouda, R.N. Devi, S.S. Babu, Chem. Commun. 55, 1627 (2019).

    Article  CAS  Google Scholar 

  30. G. Mukherjee, J. Thote, H.B. Aiyappa, S. Kandambeth, S. Banerjee, K. Vanka, R. Banerjee, Chem. Commun. 53, 4461 (2017).

    Article  CAS  Google Scholar 

  31. P. Liao, Y. Hu, Z. Liang, J. Zhang, H. Yang, L.Q. He, Y.X. Tong, J.M. Liu, L. Chen, C.Y. Su, J. Mater. Chem. A 6, 3195 (2018).

    Article  CAS  Google Scholar 

  32. Z. Chen, J. Wang, S. Zhang, Y. Zhang, J. Zhang, R. Li, T. Peng, ACS Appl. Energy Mater. 2, 5665 (2019).

    Article  CAS  Google Scholar 

  33. Y. Yuan, D. Chen, J. Zhong, L. Yang, J. Wang, Z. Yu, Z. Zou, J. Phys. Chem. C 121, 24452 (2017).

    Article  CAS  Google Scholar 

  34. M. Watanabe, S. Sun, T. Ishihara, T. Kamimura, M. Nishimura, F. Tani, ACS Appl. Energy Mater. 1, 6072 (2018).

    Article  Google Scholar 

  35. X. Guo, X. Li, L. Qin, S. Kang, G. Li, Appl. Catal. B. 243, 1 (2019).

    Article  CAS  Google Scholar 

  36. K. Liu, R. Xing, Y. Li, Q. Zou, M. Helmuth, X. Yan, Angew. Chem. Int. Ed. Engl. 55, 1 (2016).

    Article  Google Scholar 

  37. L. Zhang, L. Qin, S. Kang, G. Li, X. Li, ACS Sustain. Chem. Eng. 7, 8358 (2019).

    Article  CAS  Google Scholar 

  38. K. Zhu, Q. Luo, S. Kang, L. Qin, G. Li, X. Li, Nanoscale 10, 18635 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Fan, H. & Bai, F. Porphyrin-based photocatalysts for hydrogen production. MRS Bulletin 45, 49–56 (2020). https://doi.org/10.1557/mrs.2019.294

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.294

Navigation