Abstract
Plasmonic nanostructures possess broadly tunable optical properties with catalytically active surfaces. They offer new opportunities for achieving efficient solar-to-chemical energy conversion. Plasmonic metal-semiconductor heterostructures have attracted heightened interest due to their capability of generating energetic hot electrons that can be collected to facilitate chemical reactions. In this article, we present a detailed survey of recent examples of plasmonic metal-semiconductor heterostructures for hot-electron-driven photochemistry, including plasmonic metal-oxide, plasmonic metal-two-dimensional materials, and plasmonic metal-metal-organic frameworks. We conclude with a discussion on the remaining challenges in the field and an outlook regarding future opportunities for designing high-performance plasmonic metal-semiconductor heterostructures for photochemistry.
Similar content being viewed by others
References
Reference Solar Spectral Irradiance: Air Mass 1.5,” http:///solar/spectra/am1.5 (accessed October 23, 2017).
Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J.R. Mulcahy, W.D. Wei, Chem. Rev. 118, 2927 (2018).
M.L. Brongersma, N.J. Halas, P. Nordlander, Nat. Nanotechnol. 10, 25 (2015).
S. Linic, U. Aslam, C. Boerigter, M. Morabito, Nat. Mater. 14, 567 (2015).
U. Aslam, V.G. Rao, S. Chavez, S. Linic, Nat. Catal. 1, 656 (2018).
M.J. Kale, T. Avanesian, P. Christopher, ACS Catal. 4, 116 (2014).
V. Giannini, A.I. Fernández-Domínguez, S.C. Heck, S.A. Maier, Chem. Rev. 111, 3888 (2011).
K.A. Willets, R.P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).
R.L. Gieseking, M.A. Ratner, G.C. Schatz, ACS Symp. Ser. 1245 (1), 1 (2016).
B. Hammer, J.K. Norskov, Nature 376, 238 (1995).
J.S. Duchene, B.C. Sweeny, A.C. Johnston-Peck, D. Su, E.A. Stach, W.D. Wei, Angew. Chem. Int. Ed. Engl. 53, 7887 (2014).
K. Qian, B.C. Sweeny, A.C. Johnston-Peck, W. Niu, J.O. Graham, J.S. Duchene, J. Qiu, Y.C. Wang, M.H. Engelhard, D. Su, E.A. Stach, W.D. Wei, J. Am. Chem. Soc. 136, 9842 (2014).
J. Yang, Y. Guo, R. Jiang, F. Qin, H. Zhang, W. Lu, J. Wang, J.C. Yu, J. Am. Chem. Soc. 140, 8497 (2018).
C. Li, T. Wang, Z.J. Zhao, W. Yang, J.F. Li, A. Li, Z. Yang, G.A. Ozin, J. Gong, Angew. Chem. Int. Ed. Engl. 57, 5278 (2018).
J.B. Priebe, M. Karnahl, H. Junge, M. Beller, D. Hollmann, A. Brückner, Angew. Chem. Int. Ed. Engl. 52, 11420 (2013).
W. Hou, W.H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, S.B. Cronin, ACS Catal. 1, 929 (2011).
L. Collado, A. Reynal, J.M. Coronado, D.P. Serrano, J.R. Durrant, V.A. De la Peña O’Shea, Appl. Catal. B 178, 177 (2015).
D. Tsukamoto, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, J. Am. Chem. Soc. 134, 6309 (2012).
A. Tanaka, Y. Nishino, S. Sakaguchi, T. Yoshikawa, K. Imamura, K. Hashimoto, H. Kominami, Chem. Commun. 49, 2551 (2013).
Q. Zhang, X. Jin, Z. Xu, J. Zhang, U.F. Rendón, L. Razzari, M. Chaker, D. Ma, J. Phys. Chem. Lett. 9, 5317 (2018).
B.K. Patra, A.K. Guria, A. Dutta, A. Shit, N. Pradhan, Chem. Mater. 26, 7194 (2014).
L. Liu, S. Ouyang, J. Ye, Angew. Chem. Int. Ed. Engl. 52, 6689 (2013).
X. Cai, M. Zhu, O.A. Elbanna, M. Fujitsuka, S. Kim, L. Mao, J. Zhang, T. Majima, ACS Catal. 8, 122 (2018).
B. Wu, D. Liu, S. Mubeen, T.T. Chuong, M. Moskovits, G.D. Stucky, J. Am. Chem. Soc. 138, 1114 (2016).
H. Jia, A. Du, H. Zhang, J. Yang, R. Jiang, J. Wang, C.Y. Zhang, J. Am. Chem. Soc. 141, 5083 (2019).
W. Jiang, S. Bai, L. Wang, X. Wang, L. Yang, Y. Li, D. Liu, X. Wang, Z. Li, J. Jiang, Y. Xiong, Small 12, 1640 (2016).
A. Sousa-Castillo, M. Comesaña-Hermo, B. Rodríguez-González, M. Pérez-Lorenzo, Z. Wang, X.T. Kong, A.O. Govorov, M.A. Correa-Duarte, J. Phys. Chem. C 120, 11690 (2016).
H. Robatjazi, H. Zhao, D.F. Swearer, N.J. Hogan, L. Zhou, A. Alabastri, M.J. McClain, P. Nordlander, N.J. Halas, Nat. Commun. 8, (2017).
S. He, J. Huang, J.L. Goodsell, A. Angerhofer, W.D. Wei, Angew. Chem. Int. Ed. Engl. 58, 6038 (2019).
J. Zou, Z. Si, Y. Cao, R. Ran, X. Wu, D. Weng, J. Phys. Chem. C 120, 29116 (2016).
E. Liu, L. Qi, J. Bian, Y. Chen, X. Hu, J. Fan, H. Liu, C. Zhu, Q. Wang, Mater. Res. Bull. 68, 203 (2015).
J.W. Hong, D.H. Wi, S.U. Lee, S.W. Han, J. Am. Chem. Soc. 138, 15766 (2016).
A. Tanaka, S. Sakaguchi, K. Hashimoto, H. Kominami, ACS Catal. 3, 79 (2013).
Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, J. Am. Chem. Soc. 136, 458 (2014).
S. Mubeen, J. Lee, N. Singh, S. Krämer, G.D. Stucky, M. Moskovits, Nat. Nanotechnol. 8, 247 (2013).
P. Zhang, M. Fujitsuka, T. Majima, Nanoscale 9, 1520 (2017).
Y. Shi, J. Wang, C. Wang, T.T. Zhai, W.J. Bao, J.J. Xu, X.H. Xia, H.Y. Chen, J. Am. Chem. Soc. 137, 7365 (2015).
B. Shang, X. Cui, L. Jiao, K. Qi, Y. Wang, J. Fan, Y. Yue, H. Wang, Q. Bao, X. Fan, S. Wei, W. Song, Z. Cheng, S. Guo, W. Zheng, Nano Lett. 19, 2758 (2019).
Z. Lou, M. Fujitsuka, T. Majima, J. Phys. Chem. Lett. 8, 844 (2017).
L. Zhang, N. Ding, L. Lou, K. Iwasaki, H. Wu, Y. Luo, D. Li, K. Nakata, A. Fujishima, Q. Meng, Adv. Funct. Mater. 29, 1 (2019).
J. Xue, S. Ma, Y. Zhou, Z. Zhang, M. He, ACS Appl. Mater. Interfaces 7, 9630 (2015).
H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.Z. Qiao, Chem. Rev. 118, 6337 (2018).
W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116, 7159 (2016).
C. Liu, D. Kong, P.C. Hsu, H. Yuan, H.W. Lee, Y. Liu, H. Wang, S. Wang, K. Yan, D. Lin, P.A. Maraccini, K.M. Parker, A.B. Boehm, Y. Cui, Nat. Nanotechnol. 11, 1098 (2016).
D. Voiry, R. Fullon, J. Yang, C. de Carvalho Castro e Silva, R. Kappera, I. Bozkurt, D. Kaplan, M.J. Lagos, P.E. Batson, G. Gupta, A.D. Mohite, L. Dong, D. Er, V.B. Shenoy, T. Asefa, M. Chhowalla, Nat. Mater. 15, 1003 (2016).
J. Zhang, J. Wu, H. Guo, W. Chen, J. Yuan, U. Martinez, G. Gupta, A. Mohite, P.M. Ajayan, J. Lou, Adv. Mater. 29, 1 (2017).
M.E. Khan, M.M. Khan, M.H. Cho, Nanoscale 10, 9427 (2018).
Q. Han, N. Chen, J. Zhang, L. Qu, Mater. Horiz. 4, 832 (2017).
H.C. Zhou, J.R. Long, O.M. Yaghi, Chem. Rev. 112, 673 (2012).
A. Corma, H. Garcia, F.X. Llabrés i Xamena, Chem. Rev. 110, 4606 (2010).
L. Zhu, X.Q. Liu, H.L. Jiang, L.B. Sun, Chem. Rev. 117, 8129 (2017).
J.D. Xiao, L. Han, J. Luo, S.H. Yu, H.L. Jiang, Angew. Chem. Int. Ed. Engl. 57, 1103 (2018).
H.-L. Jiang, S.-S. Wang, L. Jiao, Y. Qian, W.-C. Hu, G.-Y. Xu, C. Wang, Angew. Chem. Int. Ed. Engl. 58, 1 (2019).
H. Robatjazi, D. Weinberg, D.F. Swearer, C. Jacobson, M. Zhang, S. Tian, L. Zhou, P. Nordlander, N.J. Halas, Sci. Adv. 5, 5340 (2019).
X. Huang, H. Li, C. Zhang, S. Tan, Z. Chen, L. Chen, Z. Lu, X. Wang, M. Xiao, Nat. Commun. 10, 1 (2019).
A. Furube, L. Du, K. Hara, R. Katoh, M. Tachiya, J. Am. Chem. Soc. 129, 14852 (2007).
J.S. Manser, J.A. Christians, P.V. Kamat, Chem. Rev. 116, 12956 (2016).
C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Chem. Rev. 119, 3418 (2019).
S. Wang, Y. Gao, S. Miao, T. Liu, L. Mu, R. Li, F. Fan, C. Li, J. Am. Chem. Soc. 139, 11771 (2017).
J.S. Duchene, G. Tagliabue, A.J. Welch, W.H. Cheng, H.A. Atwater, Nano Lett. 18, 2545 (2018).
S.F. Hung, F.X. Xiao, Y.Y. Hsu, N.T. Suen, H. Bin Yang, H.M. Chen, B. Liu, Adv. Energy Mater. 6, 1 (2016).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, J., Guo, W., Hu, Y. et al. Plasmonic metal-semiconductor heterostructures for hot-electron-driven photochemistry. MRS Bulletin 45, 37–42 (2020). https://doi.org/10.1557/mrs.2019.292
Published:
Issue Date:
DOI: https://doi.org/10.1557/mrs.2019.292