Skip to main content

Advertisement

Log in

Hot-carrier dynamics in catalysis

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Nanoscale materials that contain metallic components can be designed to have excellent light-harvesting capabilities, and can also be used to direct the flow of energy from incident photons into small molecules at or near the surface of metal nanoparticles. One promising route for energy flow is through so-called hot charge carriers, which are optically excited on metal nanoparticles and subsequently transferred to molecules/materials that share an interface with the metal. This article provides an overview of the fundamentals of hot-carrier generation and transfer, discusses both theoretical and experimental means for interrogating these processes, and discusses several potential societally important applications of hot-carrier-driven chemistry to solar fuels and sustainable chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. B. Mennucci, S. Corni, Nat. Rev. Chem. 3, 315 (2019).

    Article  Google Scholar 

  2. S. Linic, P. Christopher, D.B. Ingram, Nat. Mater. 10, 911 (2011).

    Article  CAS  Google Scholar 

  3. M.L. Brongersma, N.J. Halas, P. Norldlander, Nat. Nanotechnol. 10, 25 (2019).

    Article  CAS  Google Scholar 

  4. Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J.R. Mulcahy, W.D. Wei, Chem. Rev. 118, 2927 (2018).

    Article  CAS  Google Scholar 

  5. N. Zhang, C. Han, Y.-J. Xu, J.J. Foley IV, D. Zhang. J. Codrington, S.K. Gray, Y. Sun, Nat. Photonics 10, 473 (2016).

    Article  CAS  Google Scholar 

  6. J. Codrington, N. Eldabagh, K. Fernando, J.J. Foley IV, ACS Photonics 4, 552 (2017).

    Article  CAS  Google Scholar 

  7. G.V. Hartland, L.V. Besteiro, P. Johns, A.O. Govorov, ACS Energy Lett. 2, 1641 (2017).

    Article  CAS  Google Scholar 

  8. L. Yan, F. Wang, S. Meng, ACS Nano 10, 5452 (2016).

    Article  CAS  Google Scholar 

  9. R. Long, O.V. Prezhdo, J. Am. Chem. Soc. 136, 4343 (2014).

    Article  CAS  Google Scholar 

  10. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).

    Book  Google Scholar 

  11. M.I. Mischenko, L.D. Travis, D.W. Mackowski, J. Quant. Spectrosc. Radiat. Transf. 55, 535 (1996).

    Article  Google Scholar 

  12. B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994).

    Article  Google Scholar 

  13. J.-M. Jin, The Finite Element Method in Electromagnetics (Wiley, 2014, Hoboken, NJ).

    Google Scholar 

  14. A. Taflov, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, Boston, 2005).

    Google Scholar 

  15. A.O. Govorov, H. Zhang, Y.K. Gun’ko, J. Phys. Chem. C 117, 16616 (2013).

    Article  CAS  Google Scholar 

  16. A. Manjavacs, J.G. Liu, V. Kulkarni, P. Nordlander, ACS Nano 8, 7630 (2014).

    Article  CAS  Google Scholar 

  17. N.V. Ilawe, M.B. Owiedo, B.M. Wong, J. Chem. Theory Comput. 13, 3442 (2017).

    Article  CAS  Google Scholar 

  18. S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. Brown, J. Cheng, J.B. Lassiter, E.A. Carter, P. Nordlander, N.J. Halas, Nano Lett. 13, 240 (2013).

    Article  CAS  Google Scholar 

  19. Y.-Y. Cai, J.G. Liu, L.J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W.-S. Chang, P. Nordlander, S. Link, ACS Nano 12, 976 (2018).

    Article  CAS  Google Scholar 

  20. K. Wu, J. Chen, J.R. McBride, T. Lian, Science 349, 632 (2015).

    Article  CAS  Google Scholar 

  21. H. Harutyunyan, A.B.F. Martinson, D. Rosenmann, L.K. Khorashad, L.V. Besteiro, A.O. Govorov, G.P. Wiederrecht, Nat. Nanotechnol. 10, 770 (2015).

    Article  CAS  Google Scholar 

  22. A. Giugni, B. Torre, A. Toma, M. Francardi, M. Malerba, A. Alabastri, R.P. Zaccaria, M.I. Stockman, E.D. Fabrizio, Nat. Nanotechnol. 8, 845 (2013).

    Article  CAS  Google Scholar 

  23. O. Lozan, R. Sundararaman, B. Ea-Kim, J.-M. Rampnoux, P. Narang, S. Dilhaire, P. Lalanne, Nat. Commun. 8, 1656 (2017).

    Article  CAS  Google Scholar 

  24. C.-K. Sun, F. Vallee, L.H. Acioli, E.P. Ippen, J.G. Fujimoto, Phys. Rev. B 50, 15337 (1994).

    Article  CAS  Google Scholar 

  25. G.V. Hartland, Chem. Rev. 111, 3858 (2011).

    Article  CAS  Google Scholar 

  26. A.M. Brown, R. Sundararaman, P. Narang, A.M. Schwartzberg, W.A. Goddard, H.A. Atwater, Phys. Rev. Lett. 118, 087401 (2017).

    Article  Google Scholar 

  27. M.E. Sykes, J.W. Stewart, G.M. Akselrod, X.-T. Kong, Z. Wang, D.J. Gosztola, A.B.F. Martinson, D. Rosenmann, M.H. Mikkelsen, A.O. Govorov, G.P. Wiederrecht, Nat. Commun. 8, 986 (2017).

    Article  CAS  Google Scholar 

  28. T. Heilpern, M. Manjare, A.O. Govorov, G.P. Wiederrecht, S.K. Gray, H. Harutyunyan, Nat. Commun. 9, 1853 (2018).

    Article  CAS  Google Scholar 

  29. L. Landau, J. Phys. 10, 25 (1946).

    Google Scholar 

  30. U. Kreibig, L. Genzel, Surf. Sci. 156, 678 (1985).

    Article  CAS  Google Scholar 

  31. C. Clavero, Nat. Photonics 8, 95 (2014).

    Article  CAS  Google Scholar 

  32. A. Block, M. Liebel, R. Yu, M. Spector, Y. Sivan, F.J. García de Abajo, N.F. van Hulst, Sci. Adv. 5, eaav8965 (2019).

    Article  CAS  Google Scholar 

  33. L.H. Nicholls, T. Stefaniuk, M.E. Nasir, F.J. Rodríguez-Fortuño, G.A. Wurtz, A.V. Zayats, Nat. Commun. 10, 2967 (2019).

    Article  Google Scholar 

  34. T. Haug, P. Klemm, S. Bange, J.M. Lupton, Phys. Rev. Lett. 115, 67403 (2015).

    Article  CAS  Google Scholar 

  35. Y.-Y. Cai, E. Sung, R. Zhang, L.J. Tauzin, J.G. Liu, B. Ostovar, Y. Zhang, W.-S. Chang, P. Nordlander, S. Link, Nano Lett. 19, 1067 (2019).

    Article  CAS  Google Scholar 

  36. M.R. Beversluis, A. Bouhelier, L. Novotny, Phys. Rev. B 68, 115433 (2003).

    Article  CAS  Google Scholar 

  37. L. Roloff, P. Klemm, I. Gronwald, R. Huber, J.M. Lupton, S. Bange, Nano Lett. 17, 7914 (2017).

    Article  CAS  Google Scholar 

  38. J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang, J.J. Baumberg, Nano Lett. 17, 2568 (2017).

    Article  CAS  Google Scholar 

  39. R.J. Detz, J.N.H. Reek, B.C.C. van der Zwaan, Energy Environ. Sci. 11, 1653 (2018).

    Article  CAS  Google Scholar 

  40. J. Lee, S. Mubeen, X. Ji, G.D. Stucky, M. Moskovits, Nano Lett. 12, 5014 (2012).

    Article  CAS  Google Scholar 

  41. S. Mubeen, J. Lee, N. Singh, S. Krämer, G.D. Stucky, M. Moskovits, Nat. Nanotechnol. 8, 247 (2013).

    Article  CAS  Google Scholar 

  42. H. Robatjazi, S.M. Bahauddin, C. Doiron, I. Thomann, Nano Lett. 15, 6155 (2015).

    Article  CAS  Google Scholar 

  43. S. Neatur, J.A. Maciá-Agulló, P. Conceptión, H. Garcia, J. Am. Chem. Soc. 136, 15969 (2014).

    Article  CAS  Google Scholar 

  44. F. Wang, C. Li, H. Chen, R. Jiang, L.-D. Sun, Q. Li, J. Wang, J.C. Yu, C.-H. Yan, J. Am. Chem. Soc. 135, 5599 (2013).

    Google Scholar 

  45. O. Guselnikova, A. Olshtrem, Y. Kalachyova, I. Panov, P. Postnikov, V. Svorcik O. Lyutokov, J. Phys. Chem. C 122, 26613 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayk Harutyunyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harutyunyan, H., Suchanek, F., Lemasters, R. et al. Hot-carrier dynamics in catalysis. MRS Bulletin 45, 32–36 (2020). https://doi.org/10.1557/mrs.2019.291

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.291

Navigation