Abstract
Nanoscale materials that contain metallic components can be designed to have excellent light-harvesting capabilities, and can also be used to direct the flow of energy from incident photons into small molecules at or near the surface of metal nanoparticles. One promising route for energy flow is through so-called hot charge carriers, which are optically excited on metal nanoparticles and subsequently transferred to molecules/materials that share an interface with the metal. This article provides an overview of the fundamentals of hot-carrier generation and transfer, discusses both theoretical and experimental means for interrogating these processes, and discusses several potential societally important applications of hot-carrier-driven chemistry to solar fuels and sustainable chemistry.
Similar content being viewed by others
References
B. Mennucci, S. Corni, Nat. Rev. Chem. 3, 315 (2019).
S. Linic, P. Christopher, D.B. Ingram, Nat. Mater. 10, 911 (2011).
M.L. Brongersma, N.J. Halas, P. Norldlander, Nat. Nanotechnol. 10, 25 (2019).
Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J.R. Mulcahy, W.D. Wei, Chem. Rev. 118, 2927 (2018).
N. Zhang, C. Han, Y.-J. Xu, J.J. Foley IV, D. Zhang. J. Codrington, S.K. Gray, Y. Sun, Nat. Photonics 10, 473 (2016).
J. Codrington, N. Eldabagh, K. Fernando, J.J. Foley IV, ACS Photonics 4, 552 (2017).
G.V. Hartland, L.V. Besteiro, P. Johns, A.O. Govorov, ACS Energy Lett. 2, 1641 (2017).
L. Yan, F. Wang, S. Meng, ACS Nano 10, 5452 (2016).
R. Long, O.V. Prezhdo, J. Am. Chem. Soc. 136, 4343 (2014).
C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).
M.I. Mischenko, L.D. Travis, D.W. Mackowski, J. Quant. Spectrosc. Radiat. Transf. 55, 535 (1996).
B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994).
J.-M. Jin, The Finite Element Method in Electromagnetics (Wiley, 2014, Hoboken, NJ).
A. Taflov, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, Boston, 2005).
A.O. Govorov, H. Zhang, Y.K. Gun’ko, J. Phys. Chem. C 117, 16616 (2013).
A. Manjavacs, J.G. Liu, V. Kulkarni, P. Nordlander, ACS Nano 8, 7630 (2014).
N.V. Ilawe, M.B. Owiedo, B.M. Wong, J. Chem. Theory Comput. 13, 3442 (2017).
S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. Brown, J. Cheng, J.B. Lassiter, E.A. Carter, P. Nordlander, N.J. Halas, Nano Lett. 13, 240 (2013).
Y.-Y. Cai, J.G. Liu, L.J. Tauzin, D. Huang, E. Sung, H. Zhang, A. Joplin, W.-S. Chang, P. Nordlander, S. Link, ACS Nano 12, 976 (2018).
K. Wu, J. Chen, J.R. McBride, T. Lian, Science 349, 632 (2015).
H. Harutyunyan, A.B.F. Martinson, D. Rosenmann, L.K. Khorashad, L.V. Besteiro, A.O. Govorov, G.P. Wiederrecht, Nat. Nanotechnol. 10, 770 (2015).
A. Giugni, B. Torre, A. Toma, M. Francardi, M. Malerba, A. Alabastri, R.P. Zaccaria, M.I. Stockman, E.D. Fabrizio, Nat. Nanotechnol. 8, 845 (2013).
O. Lozan, R. Sundararaman, B. Ea-Kim, J.-M. Rampnoux, P. Narang, S. Dilhaire, P. Lalanne, Nat. Commun. 8, 1656 (2017).
C.-K. Sun, F. Vallee, L.H. Acioli, E.P. Ippen, J.G. Fujimoto, Phys. Rev. B 50, 15337 (1994).
G.V. Hartland, Chem. Rev. 111, 3858 (2011).
A.M. Brown, R. Sundararaman, P. Narang, A.M. Schwartzberg, W.A. Goddard, H.A. Atwater, Phys. Rev. Lett. 118, 087401 (2017).
M.E. Sykes, J.W. Stewart, G.M. Akselrod, X.-T. Kong, Z. Wang, D.J. Gosztola, A.B.F. Martinson, D. Rosenmann, M.H. Mikkelsen, A.O. Govorov, G.P. Wiederrecht, Nat. Commun. 8, 986 (2017).
T. Heilpern, M. Manjare, A.O. Govorov, G.P. Wiederrecht, S.K. Gray, H. Harutyunyan, Nat. Commun. 9, 1853 (2018).
L. Landau, J. Phys. 10, 25 (1946).
U. Kreibig, L. Genzel, Surf. Sci. 156, 678 (1985).
C. Clavero, Nat. Photonics 8, 95 (2014).
A. Block, M. Liebel, R. Yu, M. Spector, Y. Sivan, F.J. García de Abajo, N.F. van Hulst, Sci. Adv. 5, eaav8965 (2019).
L.H. Nicholls, T. Stefaniuk, M.E. Nasir, F.J. Rodríguez-Fortuño, G.A. Wurtz, A.V. Zayats, Nat. Commun. 10, 2967 (2019).
T. Haug, P. Klemm, S. Bange, J.M. Lupton, Phys. Rev. Lett. 115, 67403 (2015).
Y.-Y. Cai, E. Sung, R. Zhang, L.J. Tauzin, J.G. Liu, B. Ostovar, Y. Zhang, W.-S. Chang, P. Nordlander, S. Link, Nano Lett. 19, 1067 (2019).
M.R. Beversluis, A. Bouhelier, L. Novotny, Phys. Rev. B 68, 115433 (2003).
L. Roloff, P. Klemm, I. Gronwald, R. Huber, J.M. Lupton, S. Bange, Nano Lett. 17, 7914 (2017).
J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang, J.J. Baumberg, Nano Lett. 17, 2568 (2017).
R.J. Detz, J.N.H. Reek, B.C.C. van der Zwaan, Energy Environ. Sci. 11, 1653 (2018).
J. Lee, S. Mubeen, X. Ji, G.D. Stucky, M. Moskovits, Nano Lett. 12, 5014 (2012).
S. Mubeen, J. Lee, N. Singh, S. Krämer, G.D. Stucky, M. Moskovits, Nat. Nanotechnol. 8, 247 (2013).
H. Robatjazi, S.M. Bahauddin, C. Doiron, I. Thomann, Nano Lett. 15, 6155 (2015).
S. Neatur, J.A. Maciá-Agulló, P. Conceptión, H. Garcia, J. Am. Chem. Soc. 136, 15969 (2014).
F. Wang, C. Li, H. Chen, R. Jiang, L.-D. Sun, Q. Li, J. Wang, J.C. Yu, C.-H. Yan, J. Am. Chem. Soc. 135, 5599 (2013).
O. Guselnikova, A. Olshtrem, Y. Kalachyova, I. Panov, P. Postnikov, V. Svorcik O. Lyutokov, J. Phys. Chem. C 122, 26613 (2018).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Harutyunyan, H., Suchanek, F., Lemasters, R. et al. Hot-carrier dynamics in catalysis. MRS Bulletin 45, 32–36 (2020). https://doi.org/10.1557/mrs.2019.291
Published:
Issue Date:
DOI: https://doi.org/10.1557/mrs.2019.291