Skip to main content
Log in

The extreme mechanics of micro- and nanoarchitected materials

  • Three-Dimensional Architected Materials and Structures
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

A material’s properties are derived from its constituent material composition and its structural hierarchy across length scales down to the nanometer level. At submicron length scales, materials exhibit unique size-affected mechanical properties such as enhanced strength, ductility, and flaw tolerance, but these are generally lost in bulk materials. Emerging fabrication methods have enabled the creation of materials with controllable architectures down to the nanoscale. These micro- and nanoarchitected materials utilize both resilient architectures and size-affected constituent materials to achieve unprecedented mechanical properties such as ultrahigh strength at low density, recoverability after large applied strains in intrinsically brittle materials, and metamaterial properties such as chirality and negative static compressibility. In this article, we describe the governing principles behind these materials and outline recent progress in the field. We unravel the details of the deformation and failure processes to facilitate a fundamental understanding of effective materials properties and provide a guideline for the design of the next generation of nanoarchitected materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. P. Fratzl, R. Weinkamer, Prog. Mater. Sci. 52, 1263 (2007).

    Google Scholar 

  2. A.A. Zadpoor, Mater. Horiz. 3, 371 (2016).

    Google Scholar 

  3. O. Kraft, P.A. Gruber, R. Mönig, D. Weygand, Annu. Rev. Mater. Res. 40, 293 (2010).

  4. J.R. Greer, J.T.M. De Hosson, Prog. Mater. Sci. 56, 654 (2011).

    Google Scholar 

  5. C. Koch, D. Morris, K. Lu, A. Inoue, MRS Bull. 24, 54 (1999).

    Google Scholar 

  6. C. Ensslen, C. Brandl, G. Richter, R. Schwaiger, O. Kraft, Acta Mater. 108, 317 (2016).

    Google Scholar 

  7. X.W. Gu, Z. Wu, Y.-W. Zhang, D.J. Srolovitz, J.R. Greer, Nano Lett. 13, 5703 (2013).

    Google Scholar 

  8. E. Arzt, Acta Mater. 46, 5611 (1998).

    Google Scholar 

  9. D. Josell, S.H. Brongersma, Z. Tökei, Annu. Rev. Mater. Res. 39, 231 (2009).

    Google Scholar 

  10. A.J. Minnich, J.A. Johnson, A.J. Schmidt, K. Esfarjani, M.S. Dresselhaus, K.A. Nelson, G. Chen, Phys. Rev. Lett. 107, 095901 (2011).

    Google Scholar 

  11. I. Gibson, D.W. Rosen, B. Stucker, Additive Manufacturing Technologies (Springer, New York, 2015).

  12. X. Zheng, J. Deotte, M.P. Alonso, G.R. Farquar, T.H. Weisgraber, S. Gemberling, H. Lee, N. Fang, C.M. Spadaccini, Rev. Sci. Instrum. 83, 125001 (2012).

    Google Scholar 

  13. S. Maruo, O. Nakamura, S. Kawata, Opt. Lett. 22, 132 (1997).

    Google Scholar 

  14. T. Baldacchini, Three-Dimensional Microfabrication Using Two-Photon Polymerization, 1st ed. (Elsevier, Amsterdam, The Netherlands, 2015).

  15. J. Bauer, L.R. Meza, T.A. Schaedler, R. Schwaiger, X. Zheng, L. Valdevit, Adv. Mater. 29, 1701850 (2017).

    Google Scholar 

  16. T. Jeon, D.-H. Kim, S.-G. Park, Adv. Mater. Interfaces 5, 1800330 (2018).

    Google Scholar 

  17. W. Bai, C.A. Ross, MRS Bull. 41, 100 (2016).

    Google Scholar 

  18. J.J. do Rosário, E.T. Lilleodden, M. Waleczek, R. Kubrin, A.Y. Petrov, P.N. Dyachenko, J.E.C. Sabisch, K. Nielsch, N. Huber, M. Eich, G.A. Schneider, Adv. Eng. Mater. 17, 1420 (2015).

    Google Scholar 

  19. S.N. Khaderi, M.R.J. Scherer, C.E. Hall, U. Steiner, U. Ramamurty, N.A. Fleck, V.S. Deshpande, Extreme Mech. Lett. 10, 15 (2017).

    Google Scholar 

  20. L. Montemayor, V. Chernow, J.R. Greer, MRS Bull. 40, 1122 (2015).

    Google Scholar 

  21. T.A. Schaedler, W.B. Carter, Annu. Rev. Mater. Res. 46, 187 (2016).

    Google Scholar 

  22. X. Zhang, Y. Wang, B. Ding, X. Li, Small 1902842 (2019).

  23. X. Yu, J. Zhou, H. Liang, Z. Jiang, L. Wu, Prog. Mater. Sci. 94, 114 (2018).

    Google Scholar 

  24. S.J. Yeo, M.J. Oh, P.J. Yoo, Adv. Mater. 31, 1803670 (2018).

    Google Scholar 

  25. L.R. Meza, G.P. Phlipot, C.M. Portela, A. Maggi, L.C. Montemayor, A. Comella, D.M. Kochmann, J.R. Greer, Acta Mater. 140, 424 (2017).

    Google Scholar 

  26. M.C. Messner, J. Mech. Phys. Solids 96, 162 (2016).

    Google Scholar 

  27. X. Zhang, A. Vyatskikh, H. Gao, J.R. Greer, X. Li, Proc. Natl. Acad. Sci. U.S.A. 116, 6665 (2019).

    Google Scholar 

  28. T. Tancogne-Dejean, D. Mohr, Int. J. Solids Struct. 138, 24 (2018).

    Google Scholar 

  29. J.B. Berger, H.N.G. Wadley, R.M. McMeeking, Nature 543, 533 (2017).

    Google Scholar 

  30. T. Tancogne-Dejean, M. Diamantopoulou, M.B. Gorji, C. Bonatti, D. Mohr, Adv. Mater. 30, 1803334 (2018).

    Google Scholar 

  31. B.D. Nguyen, J.S. Cho, K. Kang, Mater. Des. 95, 490 (2016).

    Google Scholar 

  32. M.G. Lee, J.W. Lee, S.C. Han, K. Kang, Acta Mater. 103, 595 (2016).

    Google Scholar 

  33. L.R. Meza, A.J. Zelhofer, N. Clarke, A.J. Mateos, D.M. Kochmann, J.R. Greer, Proc. Natl. Acad. Sci. U.S.A. 112, 11502 (2015).

    Google Scholar 

  34. X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, C.M. Spadaccini, Nat. Mater. 15, 1100 (2016).

    Google Scholar 

  35. D.Z. Chen, D. Jang, K.M. Guan, Q. An, W.A. Goddard III, J.R. Greer, Nano Lett. 13, 4462 (2013).

    Google Scholar 

  36. X.W. Gu, J.R. Greer, Extreme Mech. Lett. 2, 7 (2015).

    Google Scholar 

  37. H.J. Jin, J. Weissmüller, D. Farkas, MRS Bull. 43, 35 (2018).

    Google Scholar 

  38. L.C. Montemayor, J.R. Greer, J. Appl. Mech. 82, 1 (2015).

    Google Scholar 

  39. A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C.M. Portela, J.R. Greer, Nat. Commun. 9, 593 (2018).

    Google Scholar 

  40. D. Jang, L.R. Meza, F. Greer, J.R. Greer, Nat. Mater. 12, 893 (2013).

    Google Scholar 

  41. J. Bauer, A. Schroer, R. Schwaiger, I. Tesari, C. Lange, L. Valdevit, O. Kraft, Extreme Mech. Lett. 3, 105 (2015).

    Google Scholar 

  42. L.R. Meza, S. Das, J.R. Greer, Science 345, 1322 (2014).

    Google Scholar 

  43. J. Bauer, A. Schroer, R. Schwaiger, O. Kraft, Nat. Mater. 15, 438 (2016).

    Google Scholar 

  44. L.C. Montemayor, W.H. Wong, Y.-W. Zhang, J.R. Greer, Sci. Rep. 6, 1 (2016).

    Google Scholar 

  45. S.-W. Lee, M. Jafary-Zadeh, D.Z. Chen, Y.-W. Zhang, J.R. Greer, Nano Lett. 15, 5673 (2015).

    Google Scholar 

  46. R. Liontas, J.R. Greer, Acta Mater. 133, 393 (2017).

    Google Scholar 

  47. X. Xia, C.V. Di Leo, X.W. Gu, J.R. Greer, ACS Energy Lett. 1, 492 (2016).

    Google Scholar 

  48. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008).

    Google Scholar 

  49. A. Schroer, J. Bauer, R. Schwaiger, O. Kraft, Extreme Mech. Lett. 8, 283 (2016).

    Google Scholar 

  50. A. Schroer, J.M. Wheeler, R. Schwaiger, J. Mater. Res. 33, 274 (2018).

    Google Scholar 

  51. J. Bauer, S. Hengsbach, I. Tesari, R. Schwaiger, O. Kraft, Proc. Natl. Acad. Sci. U.S.A. 111, 2453 (2014).

    Google Scholar 

  52. M.F. Ashby, Philos. Trans. R. Soc. A 364, 15 (2006).

    Google Scholar 

  53. T.A. Schaedler, C.J. Ro, A.E. Sorensen, Z. Eckel, S.S. Yang, W.B. Carter, A.J. Jacobsen, Adv. Eng. Mater. 16, 276 (2014).

    Google Scholar 

  54. M. Mieszala, M. Hasegawa, G. Guillonneau, J. Bauer, R. Raghavan, C. Frantz, O. Kraft, S. Mischler, J. Michler, L. Philippe, Small 13, 1602514 (2017).

    Google Scholar 

  55. T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, W.B. Carter, Science 334, 962 (2011).

    Google Scholar 

  56. K.J. Maloney, C.S. Roper, A.J. Jacobsen, W.B. Carter, L. Valdevit, T.A. Schaedler, APL Mater. 1, 022106 (2013).

    Google Scholar 

  57. X. Zhang, J. Yao, B. Liu, J. Yan, L. Lu, Y. Li, H. Gao, X. Li, Nano Lett. 18, 4247 (2018).

    Google Scholar 

  58. E. Totry, J.M. Molina-Aldareguía, C. González, J. Llorca, Compos. Sci. Technol. 70, 970 (2010).

    Google Scholar 

  59. A. Albiez, R. Schwaiger, MRS Adv. 4, 133 (2019).

    Google Scholar 

  60. R. Danzer, P. Supancic, J. Pascual, T. Lube, Eng. Fract. Mech. 74, 2919 (2007).

    Google Scholar 

  61. T. Zhu, J. Li, Prog. Mater. Sci. 55, 710 (2010).

    Google Scholar 

  62. J.R. Greer, J.Y. Kim, M.J. Burek, JOM 61, 19 (2009).

    Google Scholar 

  63. L.R. Meza, J.R. Greer, J. Mater. Sci. 49, 2496 (2013).

    Google Scholar 

  64. C.M. Portela, J.R. Greer, D.M. Kochmann, Extreme Mech. Lett. 22, 110 (2018).

    Google Scholar 

  65. J. Bauer, A. Schroer, R. Schwaiger, O. Kraft, Adv. Eng. Mater. 18, 1537 (2016).

    Google Scholar 

  66. T. Juarez, A. Schroer, R. Schwaiger, A.M. Hodge, Mater. Des. 140, 442 (2018).

    Google Scholar 

  67. M.T. Hsieh, B. Endo, Y. Zhang, J. Bauer, L. Valdevit, J. Mech. Phys. Solids 125, 401 (2019).

    Google Scholar 

  68. S.C. Han, J.W. Lee, K. Kang, Adv. Mater. 27, 5506 (2015).

    Google Scholar 

  69. S.P. Timoshenko, J.M. Gere, Theory of Elastic Stability (McGraw-Hill, New York, 1961).

  70. L.R. Meza, “Design, Fabrication, and Mechanical Property Analysis of 3D Nanoarchitected Materials,” PhD thesis, California Institute of Technology (2016).

  71. J. Lian, D. Jang, L. Valdevit, T.A. Schaedler, A.J. Jacobsen, W.B. Carter, J.R. Greer, Nano Lett. 11, 4118 (2011).

    Google Scholar 

  72. L. Valdevit, S.W. Godfrey, T.A. Schaedler, A.J. Jacobsen, W.B. Carter, J. Mater. Res. 28, 2461 (2013).

    Google Scholar 

  73. Z.C. Eckel, C. Zhou, J.H. Martin, A.J. Jacobsen, W.B. Carter, T.A. Schaedler, Science 351, 58 (2016).

    Google Scholar 

  74. H. Cui, R. Hensleigh, H. Chen, X. Zheng, J. Mater. Res. 33, 360 (2018).

    Google Scholar 

  75. A. Torrents, T.A. Schaedler, A.J. Jacobsen, W.B. Carter, L. Valdevit. Acta Mater. 60, 3511 (2012).

  76. X. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte, E.B. Duoss, J.D. Kuntz, M.M. Biener, Q.Q. Ge, J.A. Jackson, S.O. Kucheyev, N.X. Fang, C.M. Spadaccini, Science 344, 1373 (2014).

    Google Scholar 

  77. L. Salari-Sharif, T.A. Schaedler, L. Valdevit, J. Mater. Res. 29, 1755 (2014).

    Google Scholar 

  78. A.J. Mateos, W. Huang, Y.W. Zhang, J.R. Greer, Adv. Funct. Mater. 29, 1806772 (2019).

    Google Scholar 

  79. A. Gross, P. Pantidis, K. Bertoldi, S. Gerasimidis, J. Mech. Phys. Solids 124, 577 (2019).

    Google Scholar 

  80. Z. Vangelatos, K. Komvopoulos, C.P. Grigoropoulos, Math. Mech. Solids 24, 511 (2019).

    Google Scholar 

  81. M.R. O’Masta, L. Dong, L. St-Pierre, H.N.G. Wadley, V.S. Deshpande, J. Mech. Phys. Solids 98, 271 (2017).

    Google Scholar 

  82. M. Kadic, T. Bückmann, R. Schittny, P. Gumbsch, M. Wegener, Phys. Rev. Appl. 2, 054007 (2014).

    Google Scholar 

  83. T. Bückmann, M. Thiel, M. Kadic, R. Schittny, M. Wegener, Nat. Commun. 5, 4130 (2014).

    Google Scholar 

  84. S. Hengsbach, A. Díaz Lantada, Smart Mater. Struct. 23, 087001 (2014).

    Google Scholar 

  85. J. Qu, M. Kadic, A. Naber, M. Wegener, Sci. Rep. 7, 40643 (2017).

    Google Scholar 

  86. I. Fernandez-Corbaton, C. Rockstuhl, P. Ziemke, P. Gumbsch, A. Albiez, R. Schwaiger, T. Frenzel, M. Kadic, M. Wegener, Adv. Mater. 31, 1807742 (2019).

    Google Scholar 

  87. T. Frenzel, M. Kadic, M. Wegener, Science 358, 1072 (2017).

    Google Scholar 

  88. T. Frenzel, J. Köpfler, E. Jung, M. Kadic, M. Wegener, Nat. Comm. 29, 3384 (2019).

    Google Scholar 

  89. T. Frenzel, C. Findeisen, M. Kadic, P. Gumbsch, M. Wegener, Adv. Mater. 28, 5865 (2016).

    Google Scholar 

Download references

Acknowledgements

R.S. acknowledges financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy-2082/1-390761711. X.L. acknowledges financial support from the National Natural Science Foundation of China (Grant Nos. 11522218 and 11720101002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schwaiger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwaiger, R., Meza, L.R. & Li, X. The extreme mechanics of micro- and nanoarchitected materials. MRS Bulletin 44, 758–765 (2019). https://doi.org/10.1557/mrs.2019.230

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.230

Navigation