Skip to main content
Log in

Opportunities for materials science: From molecules to neural networks

  • Bioinspired Far-From-Equilibrium Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article addresses why biomaterials are a growing part of materials science. We consider two areas at two different scales. At the nanometer scale, enzymes are heterogeneous nanoparticles of extraordinary deformability; this property allows us to view biomolecules informed by concepts of materials science and nonlinear physics. A degree of universality in the mechanical behavior of the molecules appears in the ubiquitous softening transitions; some results obtained dynamically by nanorheology, and others obtained in equilibrium experiments through the method of the DNA springs are summarized. These soft molecules represent an opportunity for studies of dissipation at the atomic scale. At the mesoscopic scale, composite functional materials with biological components hold promise for applications such as low power, chemically driven, biodegradable devices. A concrete example, and a program for the future, is the artificial axon. It is a synthetic structure that supports action potentials based on the same physical mechanism as the voltage spikes in nerve cells. A network of such axons, which is yet to come, would constitute an artificial brain. Beyond device applications, the focus here is on the basic science, namely, a constructivist approach to cybernetics, algorithmic mathematics, and the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. E. Drexler, C. Peterson, G. Pergamit, Unbounding the Future: The Nanotechnology Revolution (William Morrow, New York, 1991).

    Google Scholar 

  2. F. Huber, J. Schnauß, S. Rönicke, P. Rauch, K. Müller, C. Fütterer, J. Käs, Adv. Phys. 62, 1 (2013).

    Google Scholar 

  3. B.H. McMahon, F.G. Parak, P.W. Fenimore, H. Frauenfelder, Proc. Natl. Acad. Sci. U.S.A. 99, 16047 (2002).

    Google Scholar 

  4. H. Frauenfelder, G. Chen, J. Berendzen, P.W. Fenimore, H. Jansson, B.H. McMahon, I.R. Stroe, J. Swenson, R.D. Young, Proc. Natl. Acad. Sci. U.S.A. 106, 5129 (2009).

    Google Scholar 

  5. L. Wanga, Y. Qina, D. Zhong, Proc. Natl. Acad. Sci. U.S.A. 113, 8424 (2016).

    Google Scholar 

  6. J. Yang, Y. Wang, L. Wang, D. Zhong, J. Am. Coll. Surg. 139, 4399 (2017).

    Google Scholar 

  7. G. Zocchi, Molecular Machines, a Materials Science Approach (Princeton University Press, Princeton, NJ, 2018).

    Google Scholar 

  8. D.E. Koshland Jr., Proc. Natl. Acad. Sci. U.S.A. 44, 98 (1958).

    Google Scholar 

  9. T.A. Steitz, W.F. Anderson, R.J. Fletterick, C.M. Anderson, J. Biol. Chem. 252, 4494 (1977).

    Google Scholar 

  10. W.S. Bennett, T.A. Steitz, Proc. Natl. Acad. Sci. U.S.A. 75, 4848 (1978).

    Google Scholar 

  11. B. Choi, G. Zocchi, S. Canale, Y. Wu, S. Chan, L.J. Perry, Phys. Rev. Lett. 94, 038103 (2005).

    Google Scholar 

  12. Y. Wang, G. Zocchi, Phys. Rev. Lett. 105, 238104 (2010).

    Google Scholar 

  13. D.R. Hekstra, K.I. White, M.A. Socolich, R.W. Henning, V. Šrajer, R. Ranganathan, Nature 540, 400 (2016).

    Google Scholar 

  14. C.-Y. Tseng, A. Wang, G. Zocchi, Europhys. Lett. 91, 18005 (2010).

    Google Scholar 

  15. C.-Y. Tseng, G. Zocchi, J. Am. Coll. Surg. 135, 11879 (2013).

    Google Scholar 

  16. Y. Wang, G. Zocchi, Europhys. Lett. 96, 18003 (2011).

    Google Scholar 

  17. Y. Wang, G. Zocchi, PLoS One 6 (12), e28097 (2011).

    Google Scholar 

  18. A. Ariyaratne, C. Wu, C.-Y. Tseng, G. Zocchi, Phys. Rev. Lett. 113, 198101 (2014).

    Google Scholar 

  19. H. Qu, J. Landy, G. Zocchi, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86, 041915 (2012).

    Google Scholar 

  20. H. Qu, G. Zocchi, Europhys. Lett. 94, 18003 (2011).

    Google Scholar 

  21. T. Dauxois, Phys. Today 61, 55 (2008).

    Google Scholar 

  22. Z. Alavi, G. Zocchi, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 97, 052402 (2018).

    Google Scholar 

  23. P.W.K. Rothemund, Nature 440, 297 (2006).

    Google Scholar 

  24. W.M. Shih, J.D. Quispe, G.F. Joyce, Nature 427, 618 (2004).

    Google Scholar 

  25. J. Chen, N.C. Seeman, Nature 350, 631 (1991).

    Google Scholar 

  26. A. Ariyaratne, G. Zocchi, J. Phys. Chem. B 120, 6255 (2016).

    Google Scholar 

  27. H.G. Vasquez, G. Zocchi, Europhys. Lett. 119, 48003 (2017).

    Google Scholar 

  28. C.M. O’Brien, B. Holmes, S. Faucett, L.G. Zhang, Tissue. Eng. Part B Rev. 21 (1), 103 (2015).

    Google Scholar 

  29. M. Thomas, S.M. Willerth, Front. Bioeng. Biotechnol. 5, 69 (2017).

    Google Scholar 

  30. D. Espinosa-Hoyos, A. Jagielska, K.A. Homan, H. Du, T. Busbee, D.G. Anderson, N.X. Fang, J.A. Lewis, K.J. Van Vliet, Sci. Rep. 8, 478 (2018).

    Google Scholar 

  31. V. Braitenberg, Vehicles (MIT Press, Cambridge, MA, 1984).

    Google Scholar 

  32. H.G. Vasquez, G. Zocchi, Bioinspir. Biomim. 14, 016017 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Zocchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zocchi, G. Opportunities for materials science: From molecules to neural networks. MRS Bulletin 44, 124–129 (2019). https://doi.org/10.1557/mrs.2019.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.23

Navigation