Skip to main content
Log in

Phase-change materials: The view from the liquid phase and the metallicity parameter

  • Phase-Change Materials in Electronics and Photonics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

While fast-switching rewritable nonvolatile memory units based on phase-change materials (PCMs) are already in production at major technology companies such as Intel (16–64 GB chips are currently available), an in-depth understanding of the physical factors that determine their success is still lacking. Recently, we have argued for a liquid-phase metal-to-semiconductor transition (M-SC), located not far below the melting point, Tm, as essential. The M-SC is itself a consequence of atomic rearrangements that are involved in a fragile-to-strong viscosity transition that controls both the speed of crystallization and the stabilization of the semiconducting state. Here, we review past work and introduce a new parameter, the “metallicity” (inverse of the average Pauling electronegativity of a multicomponent alloy). When Tm-scaled temperatures of known M-SCs of Group IV, V, and VI alloys are plotted against their metallicities, the curvilinear plot leads directly to the composition zone of all known PCMs and the temperature interval below Tm, where the transition should occur. The metallicity concept could provide guidance for tailoring PCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. B.J. Eggleton, B. Luther-Davies, K. Richardson, Nat. Photonics 5, 141 (2011).

    Article  CAS  Google Scholar 

  2. Y.S. Tveryanovich, V.M. Ushakov, A. Tverjanovich, J. Non Cryst. Solids 197, 235 (1996).

    Article  CAS  Google Scholar 

  3. S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).

    Article  Google Scholar 

  4. N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takao, Jpn. J. Appl. Phys. 26, 61 (1987).

    Article  Google Scholar 

  5. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, J. Appl. Phys. 69, 2849 (1991).

    Article  CAS  Google Scholar 

  6. M. Wuttig, Nat. Mater. 4, 265 (2005).

    Article  CAS  Google Scholar 

  7. M. Wuttig, N. Yamada, Nat. Mater. 6, 824 (2007).

    Article  CAS  Google Scholar 

  8. J. Orava, L. Greer, B. Gholipour, D.W. Hewak, C.E. Smith, Nat. Mater. 11, 279 (2012).

    Article  CAS  Google Scholar 

  9. D. Loke, J.M. Skelton, W.-J. Wang, T.-H. Lee, R. Zhao, T.-C. Chong, S.R. Elliott, Proc. Natl. Acad. Sci. U.S.A. 111, 13272 (2014).

    Article  CAS  Google Scholar 

  10. S. Wei, P. Lucas, C.A. Angell, J. Appl. Phys. 118, 034903 (2015).

    Article  CAS  Google Scholar 

  11. S. Wei, G.J. Coleman, P. Lucas, C.A. Angell, Phys. Rev. Appl. 7, 034035 (2017).

    Article  Google Scholar 

  12. S. Wei, Z. Evenson, M. Stolpe, P. Lucas, C.A. Angell, Sci. Adv. 4, eaat8632 (2018).

    Article  CAS  Google Scholar 

  13. S. Bordas, M.T. Clavaguer-Mora, B. Legendre, C. Hancheng, Thermochim. Acta 107, 239 (1986).

    Article  CAS  Google Scholar 

  14. H.S.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi, K.E. Goodson, Proc. IEEE 98, 2201 (2010).

    Article  Google Scholar 

  15. M. Wuttig, V.L. Deringer, X. Gonze, C. Bichara, J.-Y. Raty, Adv. Mater. 30, 1803777 (2018).

    Article  CAS  Google Scholar 

  16. W. Zhang, R. Mazzarello, M. Wuttig, E. Ma, Nat. Rev. Mater. 4, 150 (2019).

    Article  CAS  Google Scholar 

  17. C.A. Angell, Ann. Rev. Phys. Chem. 34, 593 (1983).

    Article  CAS  Google Scholar 

  18. C.A. Angell, U. Essman, M. Hemmati, P.H. Poole, F. Sciortino, Physica A 205, 122 (1994)

  19. S. Hosokawa, Y. Sakaguchi, K. Tamura, J. Non Cryst. Solids 150, 35 (1992).

    Article  CAS  Google Scholar 

  20. C. Otjacques, J.-Y. Raty, J.-P. Gaspard, Y. Tsuchiya, C. Bichara, in Collection SFN (EDP Sciences, 2011), pp. 233–245.

  21. Y. Tsuchiya, J. Phys. Condens. Matter 3, 3163 (1991).

    Article  CAS  Google Scholar 

  22. C. Steimer, V. Coulet, W. Welnic, H. Dieker, R. Detemple, C. Bichara, B. Beuneu, J.-P. Gaspard, M. Wuttig, Adv. Mater. 20, 4535 (2008).

    Article  CAS  Google Scholar 

  23. W.K. Njoroge, H.-W. Wöltgens, M. Wuttig, J. Vac. Sci. Technol. A 20, 230 (2002).

    Article  CAS  Google Scholar 

  24. K.L. Chopra, S.K. Bahl, J. Appl. Phys. 40, 4171 (1969).

    Article  CAS  Google Scholar 

  25. R.K. Quinn, Mater. Res. Bull. 9, 803 (1974).

    Article  CAS  Google Scholar 

  26. F. Betts, A. Bienenstock, D.T. Keating, J.P. deNeufville, J. Non Cryst. Solids 7, 417 (1972).

    Article  CAS  Google Scholar 

  27. H. Thurn, J. Ruska, Z. Anorg. Allg. Chem. 426, 237 (1976).

    Article  CAS  Google Scholar 

  28. S. Hosokawa, S. Yamada, K. Tamura, J. Non Cryst. Solids 156, 708 (1993).

    Article  Google Scholar 

  29. S. Sastry, C.A. Angell, Nat. Mater. 2, 739 (2003).

    Article  CAS  Google Scholar 

  30. P. Nagels, M. Rotti, S. Vikhrov, J. Phys. Colloq. 42, C4 (1981).

    Article  Google Scholar 

  31. Y. Tsuchiya, J. Non Cryst. Solids. 312–314, 212 (2002).

    Article  Google Scholar 

  32. V.A. Alekseev, A.A. Andreev, M.V. Sadovskii, Sov. Phys. Usp. 23, 551 (1980).

    Article  Google Scholar 

  33. S. Hosokawa, Y. Sakaguchi, H. Hiasa, K. Tamura, J. Phys. Condens. Matter 3, 6673 (1991).

    Article  CAS  Google Scholar 

  34. F. Kakinuma, S. Ohno, J. Phys. Soc. Jpn. 56, 619 (1987).

    Article  CAS  Google Scholar 

  35. A.L. Allred, J. Inorg. Nucl. Chem. 17, 215 (1961).

    Article  CAS  Google Scholar 

  36. F. Kakinuma, S. Ohno, K. Suzuki, J. Non Cryst. Solids 117, 575 (1990).

    Article  Google Scholar 

  37. H. Krebs, J. Ruska, J. Non Cryst. Solids 16, 329 (1974).

    Article  CAS  Google Scholar 

  38. M.H. Bhat, V. Molinero, E. Soignard, V.C. Solomon, S. Sastry, J.L. Yarger, C.A. Angell, Nature 448, 787 (2007).

    Article  CAS  Google Scholar 

  39. P. Zalden, F. Quirin, M. Schumacher, J. Siegel, S. Wei, A. Koc, M. Nicoul, M. Trigo, P. Andreasson, H. Enquist, M.J. Shu, T. Pardini, M. Chollet, D. Zhu, H. Lemke, I. Ronneberger, J. Larsson, A.M. Lindenberg, H.E. Fischer, S. Hau-Riege, D.A. Reis, R. Mazzarello, M. Wuttig, K. Sokolowski-Tinten, Science 364, 1062 (2019).

    Article  CAS  Google Scholar 

  40. M. Zhu, O. Cojocaru-Mirédin, A.M. Mio, J. Keutgen, M. Küpers, Y. Yu, J.-Y. Cho, R. Dronskowski, M. Wuttig, Adv. Mater. 30, 1706735 (2018).

    Article  CAS  Google Scholar 

  41. N. Han, S.I. Kim, J.-D. Yang, K. Lee, H. Sohn, H.-M. So, C.W. Ahn, K.-H. Yoo, Adv. Mater. 23, 1871 (2011).

    Article  CAS  Google Scholar 

  42. T.-Y. Lee, C. Kim, Y. Kang, D.-S. Suh, K.H.P. Kim, Y. Khang, Appl. Phys. Lett. 92, 101908 (2008).

    Article  CAS  Google Scholar 

  43. J.-Y. Raty, M. Schumacher, P. Golub, V.L. Deringer, C. Gatti, M. Wuttig, Adv. Mater. 31, 1806280 (2019).

    Article  CAS  Google Scholar 

  44. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Article  CAS  Google Scholar 

  45. C.A. Angell, Science 267, 1924 (1995).

    Article  CAS  Google Scholar 

  46. S. Wei, M. Stolpe, O. Gross, W. Hembree, S. Hechler, J. Bednarcik, R. Busch, P. Lucas, Acta Mater. 129, 259 (2017).

    Article  CAS  Google Scholar 

  47. J. Orava, H. Weber, I. Kaban, A.L. Greer, J. Chem. Phys. 144, 194503 (2016).

    Article  CAS  Google Scholar 

  48. J. Orava, D.W. Hewak, A.L. Greer, Adv. Funct. Mater. 25, 4851 (2015).

    Article  CAS  Google Scholar 

  49. P. Zalden, A. von Hoegen, P. Landreman, M. Wuttig, A.M. Lindenberg, Chem. Mater. 27, 5641 (2015).

    Article  CAS  Google Scholar 

  50. M. Salinga, E. Carria, A. Kaldenbach, M. Bornhöfft, J. Benke, J. Mayer, M. Wuttig, Nat. Commun. 4, 2371 (2013).

    Article  Google Scholar 

  51. W. Zhang, I. Ronneberger, P. Zalden, M. Xu, M. Salinga, M. Wuttig, R. Mazzarello, Sci. Rep. 4, 6529 (2014).

    Article  CAS  Google Scholar 

  52. H. Flores-Ruiz, M. Micoulaut, J. Chem. Phys. 148, 034502 (2018).

    Article  CAS  Google Scholar 

  53. H. Weber, J. Orava, I. Kaban, J. Pries, A.L. Greer, Phys. Rev. Mater. 2, 093405 (2018).

    Article  CAS  Google Scholar 

  54. B. Chen, G.H. ten Brink, G. Palasantzas, B.J. Kooi, J. Phys. Chem. C. 121, 8569 (2017).

    Article  CAS  Google Scholar 

  55. W. Götze, J. Phys. Condens. Matter 11, A1 (1999).

    Article  Google Scholar 

  56. C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000).

    Article  CAS  Google Scholar 

  57. M. Schumacher, H. Weber, P. Jóvári, Y. Tsuchiya, T.G. Youngs, I. Kaban, R. Mazzarello, Sci. Rep. 6, 27434 (2016).

    Article  CAS  Google Scholar 

  58. J.A. Kalb, M. Wuttig, F. Spaepen, J. Mater. Res. 22, 748 (2007).

    Article  CAS  Google Scholar 

  59. F. Herwig, M. Wobst, Z. Für Met. 83, 35 (1992).

    CAS  Google Scholar 

  60. H. Neumann, F. Herwig, W. Hoyer, J. Non Cryst. Solids 205–207 (Pt. 1), 438 (1996).

  61. A. Tverjanovich, J. Non Cryst. Solids 298, 226 (2002).

    Article  CAS  Google Scholar 

  62. A.S. Tverjanovich, Glass Phys. Chem. 29, 532 (2003).

    Article  CAS  Google Scholar 

  63. S.N. Yannopoulos, G.N. Papatheodorou, G. Fytas, Phys. Rev. B 60, 15131 (1999).

    Article  CAS  Google Scholar 

  64. W.-K. Rhim, K. Ohsaka, J. Cryst. Growth 208, 313 (2000).

    Article  CAS  Google Scholar 

  65. J. Pries, O. Cojocaru-Miredin, M. Wuttig, MRS Bull. 44 (9), 699 (2019).

    Article  Google Scholar 

Download references

Acknowledgments

P.L. acknowledges financial support from the National Science Foundation (NSF)–Division of Materials Research under Grant No. 1832817. C.A.A. acknowledges financial support from NSF Chemistry Division under Grant Nos. CHE-1213265 and CHE-185606. S.W. is grateful for discussion with P. Zalden and comments of M. Wuttig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Lucas, P. & Angell, C.A. Phase-change materials: The view from the liquid phase and the metallicity parameter. MRS Bulletin 44, 691–698 (2019). https://doi.org/10.1557/mrs.2019.207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.207

Navigation