Skip to main content
Log in

Phase-change materials: Empowered by an unconventional bonding mechanism

  • Phase-Change Materials in Electronics and Photonics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Phase-change materials (PCMs) have demonstrated a wide range of potential applications ranging from electronic memories to photonic devices. These applications are enabled by the unconventional portfolio of properties that characterizes crystalline PCMs. Here, we address the origin of these unusual properties and how they are related to the application potential of these materials. Evidence will be presented that the properties are related to an unconventional bonding mechanism. Employing a novel map, which separates solids according to the number of electrons transferred and shared between adjacent atoms, it is shown that PCMs occupy a well-defined region. Depicting physical properties such as the optical dielectric constant as the third dimension in the map reveals systematic property trends. Such trends can be utilized to unravel the origins of the unconventional materials properties or alternatively, as a means to optimize them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, M. Wuttig, Nat. Mater. 7, 972 (2008).

    Article  CAS  Google Scholar 

  2. M. Wuttig, N. Yamada, Nat. Mater. 6, 824 (2007).

    Article  CAS  Google Scholar 

  3. S. Raoux, W. Wełnic, D. Ielmini, Chem. Rev. 110, 240 (2009).

    Article  Google Scholar 

  4. J.Y. Raty, M. Schumacher, P. Golub, V.L. Deringer, C. Gatti, M. Wuttig, Adv. Mater. 31, 1806280 (2019).

    Article  Google Scholar 

  5. M. Wuttig, V.L. Deringer, X. Gonze, C. Bichara, J.Y. Raty, Adv. Mater. 30, 1803777 (2018).

    Article  Google Scholar 

  6. K. Makino, J. Tominaga, M. Hase, Opt. Express 19, 1260 (2011).

    Article  CAS  Google Scholar 

  7. W. Wełnic, M. Wuttig, Mater. Today 11, 20 (2008).

    Article  Google Scholar 

  8. A.V. Kolobov, P. Fons, J. Tominaga, Sci. Rep. 5, 13698 (2015).

    Article  CAS  Google Scholar 

  9. D. Loke, T.H. Lee, W.J. Wang, L.P. Shi, R. Zhao, Y.C. Yeo, T.C. Chong, S.R. Elliott, Science 336, 1566 (2012).

    Article  CAS  Google Scholar 

  10. F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, E. Ma, Science 358, 1423 (2017).

    CAS  Google Scholar 

  11. G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T.D. Happ, J.B. Philipp, M. Kund, Appl. Phys. Lett. 95, 043108 (2009).

    Article  Google Scholar 

  12. A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, T. Uruga, Nat. Mater. 3, 703 (2004).

    Article  CAS  Google Scholar 

  13. B. Huang, J. Robertson, Phys. Rev. B 81, 081204 (2010).

    Article  Google Scholar 

  14. M. Zhu, O. Cojocaru-Mirédin, A.M. Mio, J. Keutgen, M. Küpers, Y. Yu, J.-Y. Cho, R. Dronskowski, M. Wuttig, Adv. Mater. 30, 1706735 (2018).

    Article  Google Scholar 

  15. O. Cojocaru-Mirédin, H. Hollermann, A.M. Mio, A.Y. Wang, M. Wuttig, J. Phys. Condens. Matter 31, 204002 (2019).

    Article  Google Scholar 

  16. J. Shen, S. Lv, X. Chen, T. Li, S. Zhang, Z. Song, M. Zhu, ACS Appl. Mater. Interfaces 11, 5336 (2019).

    Article  CAS  Google Scholar 

  17. F. De Geuser, B. Gault, A. Bostel, F. Vurpillot, Surf. Sci. 601, 536 (2007).

    Article  Google Scholar 

  18. D.W. Saxey, Ultramicroscopy 111, 473 (2011).

    Article  CAS  Google Scholar 

  19. B. Gault, D.W. Saxey, M.W. Ashton, S.B. Sinnott, A.N. Chiaramonti, M.P. Moody, D.K. Schreiber, New J. Phys. 18, 033031 (2016).

    Article  Google Scholar 

  20. F. Tang, B. Gault, S.P. Ringer, J.M. Cairney, Ultramicroscopy 110, 836 (2010).

    Article  CAS  Google Scholar 

  21. M. Thuvander, A. Kvist, L.J. Johnson, J. Weidow, H.O. Andrén, Ultramicroscopy 132, 81 (2013).

    Article  CAS  Google Scholar 

  22. C. Gatti, Z. Kristallogr. 220, 399 (2005).

    CAS  Google Scholar 

  23. D. Turnbull, Contemp. Phys. 10, 473 (1969).

    Article  CAS  Google Scholar 

  24. O. Gulbiten, J.C. Mauro, X. Guo, O.N. Boratav, J. Am. Ceram. Soc. 101, 5 (2018).

    Article  CAS  Google Scholar 

  25. L.M. Martinez, C.A. Angell, Nature 410, 663 (2001).

    Article  CAS  Google Scholar 

  26. S. Wei, P. Lucas, C.A. Angell, MRS Bull. 44 (9), 691 (2019).

    Article  Google Scholar 

  27. A. Sebastian, M. Le Gallo, D. Krebs, Nat. Commun. 5, 4314 (2014).

    Article  CAS  Google Scholar 

  28. J. Orava, A.L. Greer, B. Gholipour, D.W. Hewak, C.E. Smith, Nat. Mater. 11, 279 (2012).

    Article  CAS  Google Scholar 

  29. M. Salinga, E. Carria, A. Kaldenbach, M. Bornhofft, J. Benke, J. Mayer, M. Wuttig, Nat. Commun. 4, 2371 (2013).

    Article  Google Scholar 

  30. J. Orava, A.L. Greer, Acta Mater. 139, 226 (2017).

    Article  CAS  Google Scholar 

  31. J.A. Kalb, M. Wuttig, F. Spaepen, J. Mater. Res. 22, 748 (2007).

    Article  CAS  Google Scholar 

  32. M.H.R. Lankhorst, J. Non Cryst. Solids 297, 210 (2002).

    Article  CAS  Google Scholar 

  33. J.-Y. Cho, D. Kim, Y.-J. Park, T.-Y. Yang, Y.-Y. Lee, Y.-C. Joo, Acta Mater. 94, 143 (2015).

    Article  CAS  Google Scholar 

  34. B. Chen, G.H. ten Brink, G. Palasantzas, B.J. Kooi, J. Phys. Chem. C 121, 8569 (2017).

    Article  CAS  Google Scholar 

  35. P. Zalden, A. von Hoegen, P. Landreman, M. Wuttig, A.M. Lindenberg, Chem. Mater. 27, 5641 (2015).

    Article  CAS  Google Scholar 

  36. J. Orava, H. Weber, I. Kaban, A.L. Greer, J. Chem. Phys. 144, 194503 (2016).

    Article  CAS  Google Scholar 

  37. J. Orava, D.W. Hewak, A.L. Greer, Adv. Funct. Mater. 25, 4851 (2015).

    Article  CAS  Google Scholar 

  38. J. Pries, S. Wei, M. Wuttig, P. Lucas, Adv. Mater. 31, 1900784 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pries.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pries, J., Cojocaru-Mirédin, O. & Wuttig, M. Phase-change materials: Empowered by an unconventional bonding mechanism. MRS Bulletin 44, 699–704 (2019). https://doi.org/10.1557/mrs.2019.204

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.204

Navigation