Skip to main content

Advertisement

Log in

Molecular motors in materials science

  • Bioinspired Far-From-Equilibrium Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Materials can be endowed with unique properties by the integration of molecular motors. Molecular motors can have a biological origin or can be chemically synthesized and produce work from chemical energy or light. Their ability to access large internal or external reservoirs of energy enables a wide range of nonequilibrium behaviors, including the production of force, changes in shape, internal reorganization, and dynamic changes in mechanical properties—muscle tissue is one illustration of the possibilities. Current research efforts advance our experimental capabilities to create such “active matter” by using either biomolecular or synthetic motors, and also advance our theoretical understanding of these materials systems. Here, we introduce this exciting research field and highlight a few of the recent advances as well as open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. M. Schliwa, G. Woehlke, Nature 422, 759 (2003).

    Google Scholar 

  2. N. Koumura, E.M. Geertsema, M.B. van Gelder, A. Meetsma, B.L. Feringa, J. Am. Chem. Soc. 124, 5037 (2002).

    Google Scholar 

  3. H. Hess, J. Clemmens, D. Qin, J. Howard, V. Vogel, Nano Lett. 1 (5), 235 (2001).

    Google Scholar 

  4. N. Koumura, R.W.J. Zijlstra, R.A. van Delden, N. Harada, B.L. Feringa, Nature 401, 152 (1999).

    Google Scholar 

  5. R.D. Vale, Cell 112 (4), 467 (2003).

    Google Scholar 

  6. C.R. Bagshaw, Muscle Contraction, 2nd ed. (Chapman & Hall, London, 1993).

  7. A.F. Huxley, R.M. Simmons, Nature 233, 533 (1971).

    Google Scholar 

  8. Y. Liu, A.H. Flood, P.A. Bonvallett, S.A. Vignon, B.H. Northrop, H.R. Tseng, J.O. Jeppesen, T.J. Huang, B. Brough, M. Baller, S. Magonov, S.D. Solares, W.A. Goddard, C.M. Ho, J.F. Stoddart, J. Am. Chem. Soc. 127, 9745 (2005).

    Google Scholar 

  9. A. Huxley, L. Peachey, J. Physiol. 156, 150 (1961).

    Google Scholar 

  10. C.J. Hawkins, P.M. Bennett, J. Muscle Res. Cell Motil. 16, 303 (1995).

    Google Scholar 

  11. S.Y. Boateng, P.H. Goldspink, Cardiovasc. Res. 77 (4), 667 (2008).

    Google Scholar 

  12. E.L. Mockford, Ann. Entomol. Soc. Am. 90, 115 (1997).

    Google Scholar 

  13. J.W. Durban, M.J. Moore, G. Chiang, L.S. Hickmott, A. Bocconcelli, G. Howes, P.A. Bahamonde, W.L. Perryman, D.J. LeRoi, Mar. Mamm. Sci. 32, 1510 (2016).

    Google Scholar 

  14. G.H. Pollack, Muscles & Molecules—Uncovering the Principles of Biological Motion (Ebner & Sons, Seattle, 1990).

    Google Scholar 

  15. J.M. Squire, Curr. Opin. Struct. Biol. 7, 247 (1997).

    Google Scholar 

  16. H.E. Huxley, J. Mol. Biol. 7, 281 (1963).

    Google Scholar 

  17. A. Hill, Proc. R. Soc. Lond. B 126 (843), 136 (1938).

    Google Scholar 

  18. R.L. Norton, Machine Design: An Integrated Approach, 4th ed. (Prentice Hall, Boston, 2011).

  19. R.K. Soong, G.D. Bachand, H.P. Neves, A.G. Olkhovets, H.G. Craighead, C.D. Montemagno, Science 290 (5496), 1555 (2000).

    Google Scholar 

  20. Y. Sowa, A.D. Rowe, M.C. Leake, T. Yakushi, M. Homma, A. Ishijima, R.M. Berry, Nature 437, 916 (2005).

    Google Scholar 

  21. H. Hess, Soft Matter 2 (8), 669 (2006).

    Google Scholar 

  22. B. Jaffe, Piezoelectric Ceramics, 1st ed. (Academic Press, London, 1971).

  23. A.T. Lam, V. VanDelinder, A.M.R. Kabir, H. Hess, G.D. Bachand, A. Kakugo, Soft Matter 12 (4), 988 (2016).

    Google Scholar 

  24. V.B. Rao, M. Feiss, Annu. Rev. Genet. 42, 647 (2008).

    Google Scholar 

  25. C. Pohl, Symmetry 7 (4), 2062 (2015).

    Google Scholar 

  26. S. Jackson, J. Clin. Invest. 122 (10), 3374 (2012).

    Google Scholar 

  27. R. Astumian, Chem. Sci. 8, 840 (2017).

    Google Scholar 

  28. H. Hess, G. Saper, Acc. Chem. Res. 51 (12), 3051 (2018).

    Google Scholar 

  29. A. Agarwal, H. Hess, Prog. Polym. Sci. 35 (1–2), 252 (2010).

  30. S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010).

    Google Scholar 

  31. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland, MA, 2001), p. 367.

  32. I.H. Riedel-Kruse, A. Hilfinger, J. Howard, F. Jülicher, HFSP J. 1, 192 (2007).

    Google Scholar 

  33. F.J. Nedelec, T. Surrey, A.C. Maggs, S. Leibler, Nature 389 (6648), 305 (1997).

    Google Scholar 

  34. L. Huber, R. Suzuki, T. Krüger, E. Frey, A. Bausch, Science 361 (6399), 255 (2018).

    Google Scholar 

  35. D. Needleman, Z. Dogic, Nat. Rev. Mater. 2 (9), 17048 (2017).

    Google Scholar 

  36. A. Saito, T.I. Farhana, A.M.R. Kabir, D. Inoue, A. Konagaya, K. Sada, A. Kakugo, RSC Adv. 7 (22), 13191 (2017).

    Google Scholar 

  37. T. Torisawa, D. Taniguchi, S. Ishihara, K. Oiwa, Biophys. J. 111, 373 (2016).

    Google Scholar 

  38. M.F. Hagan, A. Baskaran, Curr. Opin. Cell Biol. 38, 74 (2016).

    Google Scholar 

  39. T. Sanchez, D.T.N. Chen, S.J. DeCamp, M. Heymann, Z. Dogic, Nature 491 (7424), 431 (2012).

    Google Scholar 

  40. Y. Sumino, K.H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chate, K. Oiwa, Nature 483 (7390), 448 (2012).

    Google Scholar 

  41. M.S. e Silva, M. Depken, B. Stuhrmann, M. Korsten, F.C. MacKintosh, G.H. Koenderink, Proc. Natl. Acad. Sci. U.S.A. 108 (23), 9408 (2011).

    Google Scholar 

  42. T.B. Saw, W. Xi, B. Ladoux, C.T. Lim, Adv. Mater. 30 (47), 1802579 (2018).

    Google Scholar 

  43. E.R. Kay, D.A. Leigh, F. Zerbetto, Angew. Chem. Int. Ed. Engl. 46 (1–2), 72 (2007).

  44. R.A. van Delden, N. Koumura, N. Harada, B.L. Feringa, Proc. Natl. Acad. Sci. U.S.A. 99 (8), 4945 (2002).

    Google Scholar 

  45. Q. Li, G. Fuks, E. Moulin, M. Maaloum, M. Rawiso, I. Kulic, J.T. Foy, N. Giuseppone, Nat. Nanotechnol. 10, 161 (2015).

    Google Scholar 

  46. L. Yeghiazarian, S. Mahajan, C. Montemagno, C. Cohen, U. Wiesner, Adv. Mater 17 (15), 1869 (2005).

    Google Scholar 

  47. V. García-López, F. Chen, L.G. Nilewski, G. Duret, A. Aliyan, A.B. Kolomeisky, J.T. Robinson, G. Wang, R. Pal, J.M. Tour, Nature 548 (7669), 567 (2017).

    Google Scholar 

  48. C.J. Bruns, J.F. Stoddart, Acc. Chem. Res. 47 (7), 2186 (2014).

    Google Scholar 

  49. G. Du, E. Moulin, N. Jouault, E. Buhler, N. Giuseppone, Angew. Chem. 124 (50), 12672 (2012).

    Google Scholar 

  50. A. Goujon, G. Mariani, T. Lang, E. Moulin, M. Rawiso, E. Buhler, N. Giuseppone, J. Am. Chem. Soc. 139 (13), 4923 (2017).

    Google Scholar 

  51. N.P. Smith, C.J. Barclay, D.S. Loiselle, Prog. Biophys. Mol. Biol. 88 (1), 1 (2005).

    Google Scholar 

  52. M.J. Armstrong, H. Hess, ACS Nano 8 (5), 4070 (2014).

    Google Scholar 

  53. H. Hess, E.L.P. Dumont, Small 7 (12), 1619 (2011).

    Google Scholar 

  54. A.T.-C. Lam, S. Tsitkov, Y. Zhang, H. Hess, Nano Lett. 18 (2), 1530 (2018).

    Google Scholar 

  55. T. Omabegho, P.S. Gurel, C.Y. Cheng, L.Y. Kim, P.V. Ruijgrok, R. Das, G.M. Alushin, Z. Bryant, Nat. Nanotechnol. 13 (1), 34 (2018).

    Google Scholar 

  56. B. Bhushan, M. Caspers, Microsyst. Technol. 23 (4), 1117 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Hess.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hess, H., Katira, P., Riedel-Kruse, I.H. et al. Molecular motors in materials science. MRS Bulletin 44, 113–118 (2019). https://doi.org/10.1557/mrs.2019.19

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.19

Navigation