Skip to main content

Advertisement

Log in

Artificial intelligence for materials discovery

  • The Machine Learning Revolution in Materials Research
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Continued progress in artificial intelligence (AI) and associated demonstrations of superhuman performance have raised the expectation that AI can revolutionize scientific discovery in general and materials science specifically. We illustrate the success of machine learning (ML) algorithms in tasks ranging from machine vision to game playing and describe how existing algorithms can also be impactful in materials science, while noting key limitations for accelerating materials discovery. Issues of data scarcity and the combinatorial nature of materials spaces, which limit application of ML techniques in materials science, can be overcome by exploiting the rich scientific knowledge from physics and chemistry using additional AI techniques such as reasoning, planning, and knowledge representation. The integration of these techniques in materials-intelligent systems will enable AI governance of the scientific method and autonomous scientific discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. M. Campbell, A.J. Hoane, F. Hsu, Artif. Intell. 134, 57 (2002).

    Article  Google Scholar 

  2. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, D. Hassabis, Science 362, 1140 (2018).

    Article  CAS  Google Scholar 

  3. D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyanpur, A. Lally, W. Murdock, E. Nyberg, J. Prager, N. Schlaefer, C. Welty, AI Mag. 31, 59 (2010).

    Article  Google Scholar 

  4. D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis, Nature 529, 484 (2016).

    Article  CAS  Google Scholar 

  5. J. Bohannon, Science 357, 16 (2017).

    Article  Google Scholar 

  6. Y. Gil, M. Greaves, J. Hendler, H. Hirsh, Science 346, 171 (2014).

    Article  CAS  Google Scholar 

  7. P. De Luna, J. Wei, Y. Bengio, A. Aspuru-Guzik, E. Sargent, Nature 552, 23 (2017).

    Article  CAS  Google Scholar 

  8. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, npj. Comput. Mater. 3, 54 (2017).

    Article  Google Scholar 

  9. P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker, M. Krein, J. Poleski, R. Barto, B. Maruyama, npj. Comput. Mater. 2, 16031 (2016).

    Article  Google Scholar 

  10. E. Smalley, Nat. Biotechnol. 35, 604 (2017).

    Article  CAS  Google Scholar 

  11. E. Horvitz, S. Zilberstein, Artif. Intell. 126, 1 (2001).

    Article  Google Scholar 

  12. R.D. King, K.E. Whelan, F.M. Jones, P.G.K. Reiser, C.H. Bryant, S.H. Muggleton, D.B. Kell, S.G. Oliver, Nature 427, 247 (2004).

    Article  CAS  Google Scholar 

  13. J.R. Kitchin, Nat. Catal. 1, 230 (2018).

    Article  Google Scholar 

  14. D. Kahneman, Thinking, Fast and Slow (Farrar, Straus, and Giroux, New York, 2011).

    Google Scholar 

  15. A. Krizhevsky, I. Sutskever, G.E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Adv. Neural Inf. Process. Syst. 25, F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger, Eds. (ACM Publications, New York, 2012), pp. 1097–1105, http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf (accessed April 22, 2019).

    Google Scholar 

  16. D.D. Lee, H.S. Seung, Nature 401, 788 (1999).

    Article  CAS  Google Scholar 

  17. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1, 011002 (2013).

    Article  CAS  Google Scholar 

  18. S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, C. Wolverton, npj Comput. Mater. 1, 15010 (2015).

    Article  CAS  Google Scholar 

  19. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, O. Levy, Comput. Mater. Sci. 58, 227 (2012).

    Article  CAS  Google Scholar 

  20. A. Mansouri Tehrani, A.O. Oliynyk, M. Parry, Z. Rizvi, S. Couper, F. Lin, L. Miyagi, T.D. Sparks, J. Brgoch, J. Am. Chem. Soc. 140, 9844 (2018).

    Article  CAS  Google Scholar 

  21. B.L. DeCost, E.A. Holm, Comput. Mater. Sci. 110, 126 (2015).

    Article  Google Scholar 

  22. N. Borodinov, S. Neumayer, S.V. Kalinin, O.S. Ovchinnikova, R.K. Vasudevan, S. Jesse, npj Comput. Mater. 5, 5 (2019).

    Article  Google Scholar 

  23. F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers, A. Mehta, Sci. Adv. 4, eaaq1566 (2018).

    Article  CAS  Google Scholar 

  24. M.H.S. Segler, M. Preuss, M.P. Waller, Nature 555, 604 (2018).

    Article  CAS  Google Scholar 

  25. A. Jain, Y. Shin, K.A. Persson, Nat. Rev. Mater. 1, 15004 (2016).

    Article  CAS  Google Scholar 

  26. Q. Yan, J. Yu, S.K. Suram, L. Zhou, A. Shinde, P.F. Newhouse, W. Chen, G. Li, K.A. Persson, J.M. Gregoire, J.B. Neaton, Proc. Natl. Acad. Sci. U.S.A. 114, 3040 (2017).

    Article  CAS  Google Scholar 

  27. L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, npj Comput. Mater. 2, 16028 (2016).

    Article  Google Scholar 

  28. O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, A. Tropsha, Nat. Commun. 8, 15679 (2017).

    Article  CAS  Google Scholar 

  29. A. Seko, H. Hayashi, K. Nakayama, A. Takahashi, I. Tanaka, Phys. Rev. B 95, 144110 (2017).

    Article  Google Scholar 

  30. J.C. Snyder, M. Rupp, K. Hansen, K.-R. Müller, K. Burke, Phys. Rev. Lett. 108, 253002 (2012).

    Article  CAS  Google Scholar 

  31. K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Nature 559, 547 (2018).

    Article  CAS  Google Scholar 

  32. E. Gossett, C. Toher, C. Oses, O. Isayev, F. Legrain, F. Rose, E. Zurek, J. Carrete, N. Mingo, A. Tropsha, S. Curtarolo, Comput. Mater. Sci. 152, 134 (2018).

    Article  CAS  Google Scholar 

  33. L. Ward, A. Dunn, A. Faghaninia, N.E.R. Zimmermann, S. Bajaj, Q. Wang, J. Montoya, J. Chen, K. Bystrom, M. Dylla, K. Chard, M. Asta, K.A. Persson, G.J. Snyder, I. Foster, A. Jain, Comput. Mater. Sci. 152, 60 (2018).

    Article  Google Scholar 

  34. National Academies of Sciences and Medicine, Data Science: Opportunities to Transform Chemical Sciences and Engineering: Proceedings of a Workshop—in Brief (National Academies Press, Washington, DC, 2018).

    Google Scholar 

  35. J.R. Hattrick-Simpers, J.M. Gregoire, A.G. Kusne, APL Mater. 4, 053211 (2016).

    Article  CAS  Google Scholar 

  36. H.S. Stein, S. Jiao, A. Ludwig, ACS Comb. Sci. 19, 1 (2017).

    Article  CAS  Google Scholar 

  37. V. Stanev, V.V. Vesselinov, A.G. Kusne, G. Antoszewski, I. Takeuchi, B.S. Alexandrov, npj Comput. Mater. 4, 43 (2018).

    Article  CAS  Google Scholar 

  38. S. Ermon, R. Le Bras, S.K. Suram, J.M. Gregoire, C.P. Gomes, B. Selman, R.B. Van Dover, “Pattern Decomposition with Complex Combinatorial Constraints: Application to Materials Discovery,” Proc. 29th AAAI Conf. Artif. Intell. (AAAI Press, Austin, TX, 2015).

    Google Scholar 

  39. S.K. Suram, Y. Xue, J. Bai, R. Le Bras, B. Rappazzo, R. Bernstein, J. Bjorck, L. Zhou, R.B. van Dover, C.P. Gomes, J.M. Gregoire, ACS Comb. Sci. 19, 37 (2017).

    Article  CAS  Google Scholar 

  40. C.J. Long, D. Bunker, X. Li, V.L. Karen, I. Takeuchi, Rev. Sci. Instrum. 80, 103902 (2009).

    Article  CAS  Google Scholar 

  41. B. Sanchez-Lengeling, A. Aspuru-Guzik, Science 361, 360 (2018).

    Article  CAS  Google Scholar 

  42. Y. Zhang, C. Ling, npj Comput. Mater. 4, 25 (2018).

    Article  CAS  Google Scholar 

  43. S.J. Gershman, E.J. Horvitz, J.B. Tenenbaum, Science 349, 273 (2015).

    Article  CAS  Google Scholar 

  44. M. Schmidt, H. Lipson, Science 324, 81 (2009).

    Article  CAS  Google Scholar 

  45. D. Waltz, B.G. Buchanan, Science 324, 43 (2009).

    Article  CAS  Google Scholar 

  46. S.H. Muggleton, Nature 440, 409 (2006).

    Article  CAS  Google Scholar 

  47. L. Kocsis, C. Szepesvári, “Bandit Based Monte-Carlo Planning,” Proc. Mach. Learn. ECML 2006, J. Fürnkranz, T. Scheffer, M. Spiliopoulou, Eds. (Springer, Berlin, Germany, 2006), pp. 282–293.

    Chapter  Google Scholar 

  48. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, Nature 550 (7676), 354 (2017).

    Article  CAS  Google Scholar 

  49. L.P. Kaelbling, M.L. Littman, A.W. Moore, J. Artif. Intell. Res. (1996), https://arxiv.org/abs/cs/9605103v1 (accessed April 22, 2019).

  50. R.S. Sutton, A.G. Barto, Reinforcement Learning, Second Edition (MIT Press, Cambridge, MA, 2018), https://mitpress.mit.edu/books/reinforcement-learning-second-edition (accessed April 22, 2019).

    Google Scholar 

  51. R.S. Sutton, A.G. Barto, Introduction to Reinforcement Learning (MIT Press, Cambridge, MA, 1998).

    Book  Google Scholar 

  52. A. Grisafi, D.M. Wilkins, G. Csányi, M. Ceriotti, Phys. Rev. Lett. 120, 036002 (2018).

    Article  CAS  Google Scholar 

  53. J. Gilmer, S.S. Schoenholz, P. F. Riley, O. Vinyals, G.E. Dahl, “Neural Message Passing for Quantum Chemistry,” Proc. 34th Int. Conf. Mach. Learn. 70 (JMLR.org, 2017), pp. 1263–1272, http://dl.acm.org/citation.cfm?id=3305381.3305512 (accessed April 19, 2019).

  54. S. Kearnes, K. McCloskey, M. Berndl, V. Pande, P. Riley, J. Comput. Aided Mol. Des. 30, 595 (2016).

    Article  CAS  Google Scholar 

  55. M. Welborn, L. Cheng, T.F. Miller, J. Chem. Theory Comput. 14, 4772 (2018).

    Article  CAS  Google Scholar 

  56. C. Gomes, J. Bai, Y. Xue, J. Bjorck, B. Rappazzo, S. Ament, R. Bernstein, S. Kong, S. Suram, R. van Dover, J. Gregoire, MRS Commun. (forthcoming).

  57. https://community.apan.org/wg/afosr/w/researchareas/22949/scientific-autonomous-reasoning-agent-sara-integrating-materials-theory-experiment-and-computation.

  58. L.M. Roch, F. Häse, C. Kreisbeck, T. Tamayo-Mendoza, L.P.E. Yunker, J.E. Hein, A. Aspuru-Guzik, Sci. Robot. 3, eaat5559 (2018).

    Article  Google Scholar 

  59. D.P. Tabor, L.M. Roch, S.K. Saikin, C. Kreisbeck, D. Sheberla, J.H. Montoya, S. Dwaraknath, M. Aykol, C. Ortiz, H. Tribukait, C. Amador-Bedolla, C.J. Brabec, B. Maruyama, K.A. Persson, A. Aspuru-Guzik, Nat. Rev. Mater. 3, 5 (2018).

    Article  CAS  Google Scholar 

  60. T. Lookman, P.V. Balachandran, D. Xue, R. Yuan, npj Comput. Mater. 5, 25 (2019).

    Article  Google Scholar 

  61. A.G. Kusne, T. Gao, A. Mehta, L. Ke, M.C. Nguyen, K.-M. Ho, V. Antropov, C.-Z. Wang, M.J. Kramer, C. Long, I. Takeuchi, Sci. Rep. 4, 6367 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla P. Gomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, C.P., Selman, B. & Gregoire, J.M. Artificial intelligence for materials discovery. MRS Bulletin 44, 538–544 (2019). https://doi.org/10.1557/mrs.2019.158

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.158

Navigation