Abstract
Continued progress in artificial intelligence (AI) and associated demonstrations of superhuman performance have raised the expectation that AI can revolutionize scientific discovery in general and materials science specifically. We illustrate the success of machine learning (ML) algorithms in tasks ranging from machine vision to game playing and describe how existing algorithms can also be impactful in materials science, while noting key limitations for accelerating materials discovery. Issues of data scarcity and the combinatorial nature of materials spaces, which limit application of ML techniques in materials science, can be overcome by exploiting the rich scientific knowledge from physics and chemistry using additional AI techniques such as reasoning, planning, and knowledge representation. The integration of these techniques in materials-intelligent systems will enable AI governance of the scientific method and autonomous scientific discovery.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
M. Campbell, A.J. Hoane, F. Hsu, Artif. Intell. 134, 57 (2002).
D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, D. Hassabis, Science 362, 1140 (2018).
D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyanpur, A. Lally, W. Murdock, E. Nyberg, J. Prager, N. Schlaefer, C. Welty, AI Mag. 31, 59 (2010).
D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis, Nature 529, 484 (2016).
J. Bohannon, Science 357, 16 (2017).
Y. Gil, M. Greaves, J. Hendler, H. Hirsh, Science 346, 171 (2014).
P. De Luna, J. Wei, Y. Bengio, A. Aspuru-Guzik, E. Sargent, Nature 552, 23 (2017).
R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, npj. Comput. Mater. 3, 54 (2017).
P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker, M. Krein, J. Poleski, R. Barto, B. Maruyama, npj. Comput. Mater. 2, 16031 (2016).
E. Smalley, Nat. Biotechnol. 35, 604 (2017).
E. Horvitz, S. Zilberstein, Artif. Intell. 126, 1 (2001).
R.D. King, K.E. Whelan, F.M. Jones, P.G.K. Reiser, C.H. Bryant, S.H. Muggleton, D.B. Kell, S.G. Oliver, Nature 427, 247 (2004).
J.R. Kitchin, Nat. Catal. 1, 230 (2018).
D. Kahneman, Thinking, Fast and Slow (Farrar, Straus, and Giroux, New York, 2011).
A. Krizhevsky, I. Sutskever, G.E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Adv. Neural Inf. Process. Syst. 25, F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger, Eds. (ACM Publications, New York, 2012), pp. 1097–1105, http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf (accessed April 22, 2019).
D.D. Lee, H.S. Seung, Nature 401, 788 (1999).
A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1, 011002 (2013).
S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, C. Wolverton, npj Comput. Mater. 1, 15010 (2015).
S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, O. Levy, Comput. Mater. Sci. 58, 227 (2012).
A. Mansouri Tehrani, A.O. Oliynyk, M. Parry, Z. Rizvi, S. Couper, F. Lin, L. Miyagi, T.D. Sparks, J. Brgoch, J. Am. Chem. Soc. 140, 9844 (2018).
B.L. DeCost, E.A. Holm, Comput. Mater. Sci. 110, 126 (2015).
N. Borodinov, S. Neumayer, S.V. Kalinin, O.S. Ovchinnikova, R.K. Vasudevan, S. Jesse, npj Comput. Mater. 5, 5 (2019).
F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers, A. Mehta, Sci. Adv. 4, eaaq1566 (2018).
M.H.S. Segler, M. Preuss, M.P. Waller, Nature 555, 604 (2018).
A. Jain, Y. Shin, K.A. Persson, Nat. Rev. Mater. 1, 15004 (2016).
Q. Yan, J. Yu, S.K. Suram, L. Zhou, A. Shinde, P.F. Newhouse, W. Chen, G. Li, K.A. Persson, J.M. Gregoire, J.B. Neaton, Proc. Natl. Acad. Sci. U.S.A. 114, 3040 (2017).
L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, npj Comput. Mater. 2, 16028 (2016).
O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, A. Tropsha, Nat. Commun. 8, 15679 (2017).
A. Seko, H. Hayashi, K. Nakayama, A. Takahashi, I. Tanaka, Phys. Rev. B 95, 144110 (2017).
J.C. Snyder, M. Rupp, K. Hansen, K.-R. Müller, K. Burke, Phys. Rev. Lett. 108, 253002 (2012).
K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Nature 559, 547 (2018).
E. Gossett, C. Toher, C. Oses, O. Isayev, F. Legrain, F. Rose, E. Zurek, J. Carrete, N. Mingo, A. Tropsha, S. Curtarolo, Comput. Mater. Sci. 152, 134 (2018).
L. Ward, A. Dunn, A. Faghaninia, N.E.R. Zimmermann, S. Bajaj, Q. Wang, J. Montoya, J. Chen, K. Bystrom, M. Dylla, K. Chard, M. Asta, K.A. Persson, G.J. Snyder, I. Foster, A. Jain, Comput. Mater. Sci. 152, 60 (2018).
National Academies of Sciences and Medicine, Data Science: Opportunities to Transform Chemical Sciences and Engineering: Proceedings of a Workshop—in Brief (National Academies Press, Washington, DC, 2018).
J.R. Hattrick-Simpers, J.M. Gregoire, A.G. Kusne, APL Mater. 4, 053211 (2016).
H.S. Stein, S. Jiao, A. Ludwig, ACS Comb. Sci. 19, 1 (2017).
V. Stanev, V.V. Vesselinov, A.G. Kusne, G. Antoszewski, I. Takeuchi, B.S. Alexandrov, npj Comput. Mater. 4, 43 (2018).
S. Ermon, R. Le Bras, S.K. Suram, J.M. Gregoire, C.P. Gomes, B. Selman, R.B. Van Dover, “Pattern Decomposition with Complex Combinatorial Constraints: Application to Materials Discovery,” Proc. 29th AAAI Conf. Artif. Intell. (AAAI Press, Austin, TX, 2015).
S.K. Suram, Y. Xue, J. Bai, R. Le Bras, B. Rappazzo, R. Bernstein, J. Bjorck, L. Zhou, R.B. van Dover, C.P. Gomes, J.M. Gregoire, ACS Comb. Sci. 19, 37 (2017).
C.J. Long, D. Bunker, X. Li, V.L. Karen, I. Takeuchi, Rev. Sci. Instrum. 80, 103902 (2009).
B. Sanchez-Lengeling, A. Aspuru-Guzik, Science 361, 360 (2018).
Y. Zhang, C. Ling, npj Comput. Mater. 4, 25 (2018).
S.J. Gershman, E.J. Horvitz, J.B. Tenenbaum, Science 349, 273 (2015).
M. Schmidt, H. Lipson, Science 324, 81 (2009).
D. Waltz, B.G. Buchanan, Science 324, 43 (2009).
S.H. Muggleton, Nature 440, 409 (2006).
L. Kocsis, C. Szepesvári, “Bandit Based Monte-Carlo Planning,” Proc. Mach. Learn. ECML 2006, J. Fürnkranz, T. Scheffer, M. Spiliopoulou, Eds. (Springer, Berlin, Germany, 2006), pp. 282–293.
D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, Nature 550 (7676), 354 (2017).
L.P. Kaelbling, M.L. Littman, A.W. Moore, J. Artif. Intell. Res. (1996), https://arxiv.org/abs/cs/9605103v1 (accessed April 22, 2019).
R.S. Sutton, A.G. Barto, Reinforcement Learning, Second Edition (MIT Press, Cambridge, MA, 2018), https://mitpress.mit.edu/books/reinforcement-learning-second-edition (accessed April 22, 2019).
R.S. Sutton, A.G. Barto, Introduction to Reinforcement Learning (MIT Press, Cambridge, MA, 1998).
A. Grisafi, D.M. Wilkins, G. Csányi, M. Ceriotti, Phys. Rev. Lett. 120, 036002 (2018).
J. Gilmer, S.S. Schoenholz, P. F. Riley, O. Vinyals, G.E. Dahl, “Neural Message Passing for Quantum Chemistry,” Proc. 34th Int. Conf. Mach. Learn. 70 (JMLR.org, 2017), pp. 1263–1272, http://dl.acm.org/citation.cfm?id=3305381.3305512 (accessed April 19, 2019).
S. Kearnes, K. McCloskey, M. Berndl, V. Pande, P. Riley, J. Comput. Aided Mol. Des. 30, 595 (2016).
M. Welborn, L. Cheng, T.F. Miller, J. Chem. Theory Comput. 14, 4772 (2018).
C. Gomes, J. Bai, Y. Xue, J. Bjorck, B. Rappazzo, S. Ament, R. Bernstein, S. Kong, S. Suram, R. van Dover, J. Gregoire, MRS Commun. (forthcoming).
L.M. Roch, F. Häse, C. Kreisbeck, T. Tamayo-Mendoza, L.P.E. Yunker, J.E. Hein, A. Aspuru-Guzik, Sci. Robot. 3, eaat5559 (2018).
D.P. Tabor, L.M. Roch, S.K. Saikin, C. Kreisbeck, D. Sheberla, J.H. Montoya, S. Dwaraknath, M. Aykol, C. Ortiz, H. Tribukait, C. Amador-Bedolla, C.J. Brabec, B. Maruyama, K.A. Persson, A. Aspuru-Guzik, Nat. Rev. Mater. 3, 5 (2018).
T. Lookman, P.V. Balachandran, D. Xue, R. Yuan, npj Comput. Mater. 5, 25 (2019).
A.G. Kusne, T. Gao, A. Mehta, L. Ke, M.C. Nguyen, K.-M. Ho, V. Antropov, C.-Z. Wang, M.J. Kramer, C. Long, I. Takeuchi, Sci. Rep. 4, 6367 (2014).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gomes, C.P., Selman, B. & Gregoire, J.M. Artificial intelligence for materials discovery. MRS Bulletin 44, 538–544 (2019). https://doi.org/10.1557/mrs.2019.158
Published:
Issue Date:
DOI: https://doi.org/10.1557/mrs.2019.158