Skip to main content
Log in

Impact of in situ nanomechanics on physical metallurgy

  • Advances in In situ Nanomechanical Testing
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The mechanical response of modern alloys results from a complex interplay between existing microstructure and its evolution with time under stress. To unravel these processes, in situ approaches intrinsically have a critical advantage to explore the basic mechanisms involving dislocations, grain boundaries (GBs), and their interactions in real time. In this article, we discuss recent findings using in situ nanomechanical testing techniques and refined crystallographic analysis tools. Advancements in in situ nanomechanics not only include multiaxial loading conditions, which bring us closer to real-world applications, but also high strain-rate testing, which is critical to compare experiments and simulations. In particular, unraveling the details of GB-based mechanisms and related microstructural changes will facilitate significant breakthroughs in our understanding of the behavior of materials on macroscopic length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. G. Vetterick, A.C. Leff, M. Marshall, J.K. Baldwin, A. Misra, K. Hattar, M.L. Taheri, Mater. Sci. Eng. A 709, 339 (2018).

    Article  CAS  Google Scholar 

  2. C.M. Barr, S. Thomas, J.L. Hart, W. Harlow, E. Anber, M.L. Taheri, npj Mater. Degrad. 2 (1), 14 (2018).

    Article  CAS  Google Scholar 

  3. G.A. Vetterick, J. Gruber, P.K. Suri, J.K. Baldwin, M.A. Kirk, P. Baldo, Sci. Rep. 7, 12275 (2017).

    Article  CAS  Google Scholar 

  4. D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017).

    Article  CAS  Google Scholar 

  5. I.A. Ovid’ko, R.Z. Valiev, Y.T. Zhu, Prog. Mater. Sci. 94, 462 (2018), doi:10.1016/j.pmatsci.2018.02.002.

    Article  CAS  Google Scholar 

  6. J. Hu, Y.N. Shi, X. Sauvage, G. Sha, K. Lu, Science 355, 1292 (2017).

    Article  CAS  Google Scholar 

  7. A.C. Leff, M.L. Taheri, Scr. Mater. 121, 14 (2016).

    Article  CAS  Google Scholar 

  8. U. Messerschmidt, Dislocation Dynamics during Plastic Deformation (Springer, Berlin, Germany, 2010).

    Book  Google Scholar 

  9. M. Legros, C. R. Phys. 15, 224 (2014).

    Article  CAS  Google Scholar 

  10. Q. Yu, M. Legros, A.M. Minor, MRS Bull. 40, 62 (2015).

    Article  Google Scholar 

  11. M. Legros, D.S. Gianola, C. Motz, MRS Bull. 35, 354 (2011).

    Article  Google Scholar 

  12. G. Dehm, B.N. Jaya, R. Raghavan, C. Kirchlechner, Acta Mater. 142, 248 (2018).

    Article  CAS  Google Scholar 

  13. W. Kang, M. Merrill, J.M. Wheeler, Nanoscale 9, 2666 (2017).

    Article  CAS  Google Scholar 

  14. R. Ramachandramoorthy, M. Milan, Z. Lin, S. Trolier-McKinstry, A. Corigliano, H. Espinosa, Extreme Mech. Lett. 20, 14 (2018).

    Article  Google Scholar 

  15. R. Ramachandramoorthy, W. Gao, R. Bernal, H. Espinosa, Nano Lett. 16, 255 (2015).

    Article  CAS  Google Scholar 

  16. N.V. Malyar, J.S. Micha, G. Dehm, C. Kirchlechner, Acta Mater. 129, 91 (2017).

    Article  CAS  Google Scholar 

  17. J. Kacher, B.P. Eftink, B. Cui, I.M. Robertson, Curr. Opin. Solid State Mater. Sci. 18, 227 (2014).

    Article  CAS  Google Scholar 

  18. M. Chassagne, M. Legros, D. Rodney, Acta Mater. 59, 1456 (2011).

    Article  CAS  Google Scholar 

  19. M. Legros, S.D. Gianola, K.J. Hemker, Acta Mater. 56, 3380 (2008).

    Article  CAS  Google Scholar 

  20. T.J. Rupert, D.S. Gianola, Y. Gan, K.J. Hemker, Science 326, 1686 (2009).

    Article  CAS  Google Scholar 

  21. Q. Zhu, G. Cao, J. Wang, C. Deng, J. Li, Z. Zhang, S.X. Mao, Nat. Commun. 10, 156 (2019).

    Article  CAS  Google Scholar 

  22. A.C. Leff, C.R. Weinberger, M.L. Taheri, Ultramicroscopy 153, 9 (2015).

    Article  CAS  Google Scholar 

  23. T.B. Britton, A.J. Wilkinson, Acta Mater. 60, 5773 (2012).

    Article  CAS  Google Scholar 

  24. A. Nye, A.C. Leff, C.M. Barr, M.L. Taheri, Scr. Mater. 146, 308 (2018).

    Article  CAS  Google Scholar 

  25. I. Ghamarian, Y. Liu, P. Samimi, P.C. Collins, Acta Mater. 79, 203 (2014).

    Article  CAS  Google Scholar 

  26. M. Kamaya, A.J. Wilkinson, J.T.A. Materialia, Acta Mater. 54, 539 (2006).

    Article  CAS  Google Scholar 

  27. T.J. Ruggles, D.T. Fullwood, Ultramicroscopy 133, 8 (2013).

    Article  CAS  Google Scholar 

  28. F. Ram, S. Wright, S. Singh, M. De Graef, Ultramicroscopy 181, 17 (2017).

    Article  CAS  Google Scholar 

  29. J.W. Cahn, J.E. Taylor, Acta Mater. 52, 4887 (2004).

    Article  CAS  Google Scholar 

  30. F. Mompiou, M. Legros, D. Caillard, Mater. Res. Soc. Symp. Proc. 1086, (2008), doi:10.1557/PROC-1086-U09-04.

  31. A. Rajabzadeh, F. Mompiou, M. Legros, N. Combe, Phys. Rev. Lett. 110, 265507 (2013).

    Article  CAS  Google Scholar 

  32. P.F. Rottmann, K.J. Hemker, Acta Mater. 140, 46 (2017).

    Article  CAS  Google Scholar 

  33. K.D. Molodov, D.A. Molodov, Acta Mater. 153, 336 (2018).

    Article  CAS  Google Scholar 

  34. J. Han, S.L. Thomas, D.J. Srolovitz, Prog. Mater. Sci. 98, 386 (2018).

    Article  Google Scholar 

  35. J.P. Hirth, R.C. Pond, Acta Mater. 44, 4749 (1996).

    Article  CAS  Google Scholar 

  36. F. Mompiou, M. Legros, Scr. Mater. 99, 5 (2015).

    Article  CAS  Google Scholar 

  37. P.J. Imrich, C. Kirchlechner, C. Motz, G. Dehm, Acta Mater. 73, 240 (2014).

    Article  CAS  Google Scholar 

  38. J.P. Liebig, S. Krauß, M. Göken, B. Merle, Acta Mater. 154, 261 (2018).

    Article  CAS  Google Scholar 

  39. R. Maass, S. Van Petegem, H. Van Swygenhoven, P.M. Derlet, C.A. Volkert, D. Grolimund, Phys. Rev. Lett. 99, 145505 EP– (2007).

    Article  CAS  Google Scholar 

  40. N.V. Malyar, G. Dehm, C. Kirchlechner, Scr. Mater. 138, 88 (2017).

    Article  CAS  Google Scholar 

  41. D. Caillard, J.L. Martin, J. Phys. (France) 50, 2455 (1989).

    Article  CAS  Google Scholar 

  42. N.V. Malyar, B. Grabowski, G. Dehm, C. Kirchlechner, Acta Mater. 161, 412 (2018).

    Article  CAS  Google Scholar 

  43. N. Li, J. Wang, A. Misra, X. Zhang, J.Y. Huang, J.P. Hirth, Acta Mater. 59, 5989 (2011).

    Article  CAS  Google Scholar 

  44. J. Kacher, I.M. Robertson, Acta Mater. 60, 6657 (2012).

    Article  CAS  Google Scholar 

  45. J. Kacher, I.M. Robertson, Philos. Mag. 94, 814 (2014).

    Article  CAS  Google Scholar 

  46. D. Jia, K.T. Ramesh, Exp. Mech. 44, 445 (2004).

    Article  Google Scholar 

  47. J.-H. Lee, D. Veysset, J.P. Singer, M. Retsch, G. Saini, T. Pezeril, K.A. Nelson, E.L. Thomas, Nat. Commun. 3, 1164 (2012).

    Article  Google Scholar 

  48. A.T. Jennings, J. Li, J.R. Greer, Acta Mater. 59, 5627 (2011).

    Article  CAS  Google Scholar 

  49. G. Guillonneau, M. Mieszala, J. Wehrs, J. Schwiedrzik, S. Grop, D. Frey, L. Philippe, J.-M. Breguet, J. Michler, J.M. Wheeler, Mater. Des. 148, 39 (2018).

    Article  CAS  Google Scholar 

  50. M. Schamel, J.M. Wheeler, C. Niederberger, J. Michler, A. Sologubenko, R. Spolenak, Philos. Mag. 96, 3479 (2016).

    Article  CAS  Google Scholar 

  51. A. Barnoush, P. Hosemann, J. Molina-Aldareguia, J.M. Wheeler, MRS. Bull. 44 (6), 471 (2019).

    Article  Google Scholar 

  52. W.S. Choi, S. Sandlöbes, N.V. Malyar, C. Kirchlechner, S. Korte-Kerzel, G. Dehm, B.C. De Cooman, D. Raabe, Acta Mater. 132, 162 (2017).

    Article  CAS  Google Scholar 

  53. W.S. Choi, S. Sandlöbes, N.V. Malyar, C. Kirchlechner, S. Korte-Kerzel, G. Dehm, P-P. Choi, D. Raabe, Scr. Mater. 156, 27 (2018).

    Article  CAS  Google Scholar 

  54. G. Mohanty, J.M. Wheeler, R. Raghavan, J. Wehrs, M. Hasegawa, S. Mischler, L. Philippe, J. Michler, Philos. Mag. 95, 1878 (2014).

    Article  CAS  Google Scholar 

  55. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, Acta Mater. 51, 5159 (2003).

    Article  CAS  Google Scholar 

  56. F. Di Gioacchino, J. Quinta da Fonseca, Int. J. Plast. 74, 92 (2015).

    Article  CAS  Google Scholar 

  57. Z. Zhang, D. Lunt, H. Abdolvand, A.J. Wilkinson, M. Preuss, F.P.E. Dunne, Int. J. Plast. 108, 88 (2018).

    Article  CAS  Google Scholar 

  58. Z. Chen, S.H. Daly, Exp. Mech. 57, 115 (2016).

    Article  Google Scholar 

  59. S. Van Petegem, A. Guitton, M. Dupraz, A. Bollhalder, K. Sofinowski, M.V. Upadhyay, Exp. Mech. 57, 569 (2017).

    Article  CAS  Google Scholar 

  60. E. Polatidis, W.N. Hsu, M. Smid, H. Van Swygenhoven, Exp. Mech. 59, 309 (2019).

    Article  CAS  Google Scholar 

  61. M. Zecevic, M.V. Upadhyay, E. Polatidis, T. Panzner, H. Van Swygenhoven, M. Knezevic, Acta Mater. 166, 386 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kacher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kacher, J., Kirchlechner, C., Michler, J. et al. Impact of in situ nanomechanics on physical metallurgy. MRS Bulletin 44, 465–470 (2019). https://doi.org/10.1557/mrs.2019.124

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.124

Navigation