Skip to main content
Log in

Acoustic enhancement of surface reactions

  • Acoustic Processes in Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article focuses on the acoustic-wave enhancement of chemisorption and surface reactions. Acoustic waves generated by a piezoelectric phenomenon on ferroelectric crystals by the application of radio frequency electric power produce periodic lattice distortions at the surface. The effects of surface acoustic waves (SAWs) and the resonance oscillation (RO) of bulk acoustic waves on thin films of metals or metal oxides are described herein. Both SAWs and RO can modify the work functions of thin Ag, Au, or Pd films, and this effect is highly dependent on the surface structures. These changes in the work function can, in turn, affect the adsorptive characteristics of the metals as well as surface reactions and properties such as catalysis. The importance of periodic lattice displacement vertical to the surface is examined in this article, and the acoustic-wave enhancement of metal and metal oxide surfaces as a means of tuning electronic states and chemical properties is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, UK, 2001).

    Google Scholar 

  2. T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, Oxford, UK, 1990).

    Google Scholar 

  3. Y. Inoue, Surf. Sci. Rep. 62, 305 (2007).

    Google Scholar 

  4. B.A. Auld, Acoustic Fields and Waves in Solids, Vol. 2 (Wiley, New York, 1973), p. 163.

    Google Scholar 

  5. N. Saito, H. Nishiyama, K. Sato, Y. Inoue, Chem. Phys. Lett. 297, 72 (1998).

    Google Scholar 

  6. H. Nishiyama, Y. Inoue, J. Phys. Chem. B 107, 8738 (2003).

    Google Scholar 

  7. N.D. Lang, W. Kohn, Phys. Rev. B 1, 4555 (1970).

    Google Scholar 

  8. H.L. Skriver, N.M. Rosengaard, Phys. Rev. B 46, 7157 (1992).

    Google Scholar 

  9. H. Nishiyama, Y. Inoue, Surf. Sci. 600, 2644 (2006).

    Google Scholar 

  10. P.O. Gartland, S. Berge, B.J. Slagsvold, Phys. Rev. Lett. 28, 738 (1972).

    Google Scholar 

  11. A.W. Dweydari, C.H.B. Mee, Phys. Status Solidi A 17, 247 (1973).

    Google Scholar 

  12. H. Nishiyama, Y. Inoue, Surf. Sci. 594, 156 (2005).

    Google Scholar 

  13. R. Ryberg, Surf. Sci. 114, 627 (1982).

    Google Scholar 

  14. D.P. Woodruff, B.E. Hayden, K. Prince, A.M. Bradshaw, Surf. Sci. 123, 397 (1982).

    Google Scholar 

  15. P. Hollins, J. Pritchard, Surf. Sci. 89, 486 (1979).

    Google Scholar 

  16. J. Pritchard, Surf. Sci. 79, 231 (1979).

    Google Scholar 

  17. J. Pritchard, T. Catterick, R.K. Gupta, Surf. Sci. 53, 1 (1975).

    Google Scholar 

  18. H. Nishiyama, N. Rattana, N. Saito, K. Sato, Y. Inoue, J. Phys. Chem. B 104, 10602 (2000).

    Google Scholar 

  19. P. Bierbaum, Appl. Phys. Lett. 21, 595 (1972).

    Google Scholar 

  20. Y. Inoue, M. Matsukawa, K. Sato, J. Phys. Chem. 96, 2222 (1992).

    Google Scholar 

  21. Y. Inoue, M. Matsukawa, K. Sato, J. Am. Chem. Soc. 111, 8965 (1989).

    Google Scholar 

  22. Y. Inoue, M. Matsukawa, H. Kawaguchi, J. Chem. Soc. Faraday Trans. 88, 2923 (1992).

    Google Scholar 

  23. Y. Inoue, Y. Watanabe, Catal. Today 16, 487 (1993).

    Google Scholar 

  24. S. Kelling, N. Saito, Y. Inoue, D.A. King, Appl. Surf. Sci. 150, 47 (1999).

    Google Scholar 

  25. M. Gruyters, T. Mitrelias, D.A. King, Appl. Phys. A 61, 243 (1995).

    Google Scholar 

  26. T. Mitrelias, V.P. Ostanin, M. Gruyters, D.A. King, Appl. Surf. Sci. 100/101, 305 (1996).

    Google Scholar 

  27. T. Mitrelias, S. Kelling, M. Gruyters, D.A. King, Appl. Phys. Lett. 69, 3677 (1996).

    Google Scholar 

  28. S. Kelling, T. Mitrelias, Y. Matsumoto, V.P. Ostanin, D.A. King, Faraday Discuss. 107, 435 (1997).

    Google Scholar 

  29. S. Kelling, T. Mitrelias, Y. Matsumoto, V.P. Ostanin, D.A. King, J. Chem. Phys. 107, 5609 (1997).

    Google Scholar 

  30. S. Kelling, S. Cerasari, H.H. Rotermund, G. Ertl, D.A. King, Chem. Phys. Lett. 293, 325 (1998).

    Google Scholar 

  31. H. Nishiyama, N. Saito, T. Yashima, K. Sato, Y. Inoue, Surf. Sci. 427/428, 152 (1999).

    Google Scholar 

  32. N. Saito, Y. Inoue, J. Chem. Phys. 113, 469 (2000).

    Google Scholar 

  33. N. Saito, Y. Ohkawara, Y. Watanabe, Y. Inoue, Appl. Surf. Sci. 121/122, 343 (1997).

    Google Scholar 

  34. Y. Yukawa, N. Saito, H. Nishiyama, Y. Inoue, Surf. Sci. 532/535, 359 (2003).

    Google Scholar 

  35. Y. Yukawa, N. Saito, H. Nishiyama, Y. Inoue, J. Phys. Chem. B 106, 10174 (2002).

    Google Scholar 

  36. N. Saito, Y. Inoue, J. Phys. Chem. 106, 5011(2002).

    Google Scholar 

  37. J.R. Smith, Phys. Rev. 181, 522 (1969).

    Google Scholar 

  38. Th. Kratochwil, M. Wittmann, J. Küppers, J. Electron Spectrosc. Relat. Phenom. 64/65, 609 (1993).

    Google Scholar 

  39. G. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).

    Google Scholar 

  40. R.I. Marcel, Principles of Adsorption and Reactions on Solid Surfaces (Wiley, New York, 1996).

    Google Scholar 

  41. Y. Yukawa, N. Saito, H. Nishiyama, Y. Inoue, Appl. Surf. Sci. 250, 104 (2005).

    Google Scholar 

  42. A. Peremans, F. Maseri, J. Darville, J.-M. Gilles, Surf. Sci. 227, 73 (1990).

    Google Scholar 

  43. J. Wang, A. DeAngelis, D. Zaikos, M. Setiadi, R.I. Masel, Surf. Sci. 318, 307 (1994).

    Google Scholar 

  44. A.K. Bhattacharya, M.A. Chesters, M.E. Pemble, N. Sheppard, Surf. Sci. 206, L845 (1998).

    Google Scholar 

  45. N. Kruse, M. Rebholz, V. Matolin, G.K. Chuah, J.H. Block, Surf. Sci. Lett. 238, L457 (1990).

    Google Scholar 

  46. M. Rebholz, V. Matolin, R. Prins, N. Kruse, Surf. Sci. 251/252, 1117 (1991).

    Google Scholar 

  47. J.L. Davis, M.A. Barteau, Surf. Sci. 197, 123 (1998).

    Google Scholar 

  48. J.L. Davis, M.A. Barteau, Surf. Sci. 235, 235 (1990).

    Google Scholar 

  49. M. Endo, T. Matsumoto, J. Kubota, K. Domen, C. Hirose, J. Phys. Chem. B 105, 1573 (2001).

    Google Scholar 

  50. Y. Yukawa, N. Saito, H. Nishiyama, Y. Inoue, J. Phys. Chem. B 108, 20199 (2004).

    Google Scholar 

  51. N. Saito, Y. Inoue, J. Phys. Chem. B 107, 2040 (2003).

    Google Scholar 

  52. N. Saito, M. Sakamoto, H. Nishiyama, Y. Inoue, Chem. Phys. Lett. 341, 232 (2001).

    Google Scholar 

  53. N. Saito, H. Nishiyama, K. Sato, Y. Inoue, Appl. Surf. Sci. 144/145, 385 (1999).

    Google Scholar 

  54. H. Nishiyama, M. Kazui, Y. Inoue, Chem. Lett. 43, 618 (2014).

    Google Scholar 

  55. H. Nishiyama, T. Watanabe, Y. Inoue, Appl. Surf. Sci. 294, 66 (2014).

    Google Scholar 

  56. H. Nishiyama, T. Watanabe, Y. Inoue, Enzyme Microb. Technol. 67, 27 (2014).

    Google Scholar 

  57. H. Nishiyama, R. Asari, Y. Inoue, Phys. Chem. Chem. Phys. 12, 5970 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunobu Inoue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, Y. Acoustic enhancement of surface reactions. MRS Bulletin 44, 361–371 (2019). https://doi.org/10.1557/mrs.2019.106

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.106

Navigation