Skip to main content
Log in

Laser-induced acoustic desorption

  • Acoustic Processes in Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Laser-induced acoustic desorption (LIAD) enables the desorption of nonvolatile and/or thermally labile neutral compounds, such as asphaltenes, saturated hydrocarbons in base-oil fractions and biomolecules, from a metal surface into a mass spectrometer. This is a “gentle” evaporation technique and causes minimal fragmentation to the desorbed neutral molecules, including oligonucleotides and polypeptides. LIAD can be coupled with a wide range of ionization methods to facilitate analysis of the desorbed analytes by using many different types of mass spectrometers, including Fourier transform ion cyclotron resonance, linear quadrupole ion trap and quadrupole time-of-flight instruments. The development and improvement of LIAD remains an active research area with diverse goals such as better desorption efficiencies, minimized analyte fragmentation and greater versatility. This article details the theory, experimental methods, applications, and future directions of LIAD in combination with mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, Rapid Commun. Mass Spectrom. 2, 151 (1988).

    Google Scholar 

  2. J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Science 246, 64 (1989).

    Google Scholar 

  3. Z. Tak´ats, J.M. Wiseman, B. Gologan, R.G. Cooks, Science 306, 471 (2004).

    Google Scholar 

  4. B. Lindner, U. Seydel, Anal. Chem. 57, 895 (1985).

    Google Scholar 

  5. J. Pérez, C.J. Petzold, M.A. Watkins, W.E. Vaughn, H.I. Kenttämaa, J. Am. Soc. Mass Spectrom. 10, 1105 (1999).

    Google Scholar 

  6. R.C. Shea, C.J. Petzold, J. Liu, H.I. Kenttämaa, Anal. Chem. 79, 1825 (2007).

    Google Scholar 

  7. U. Sezer, L. Wörner, J. Horak, L. Felix, J. Tüxen, C. Götz, A. Vaziri, M. Mayor, M. Arndt, Anal. Chem. 87, 5614 (2015).

    Google Scholar 

  8. L.B. Freund, S. Surech, Thin Film Materials: Stress, Defect Formation, and Surface Evolution, (Cambridge University Press, Cambridge, UK, 2004), ISBN 9780511754715.

    Google Scholar 

  9. S.-C. Cheng, M.-Z. Huang, J. Shiea, Anal. Chem. 81, 9274 (2009).

    Google Scholar 

  10. B. Lindner, Int. J. Mass Spectrom. 103, 203 (1991).

    Google Scholar 

  11. J. Pérez, L.E. Ramírez-Arizmendi, C.J. Petzold, L.P. Guler, E.D. Nelson, H.I. Kenttämaa, Int. J. Mass Spectrom. 198, 173 (2000).

    Google Scholar 

  12. A.R. Dow, A.M. Wittrig, H.I. Kenttämaa, Eur. J. Mass Spectrom. (Chichester) 18, 77 (2012).

    Google Scholar 

  13. D.A. Hutchins, R.J. Dewhurst, S.B. Palmer, C.B. Scruby, Appl. Phys. Lett. 38, 677 (1981).

    Google Scholar 

  14. A.V. Zinovev, J.F. Moore, W.F. Calaway, M.J. Pellin, I.V. Veryovkin, in Proc. SPIE, A.V. Kudryashov, A.H. Paxton, V.S. Ilchenko, A. Giesen, D. Nickel, S.J. Davis, M.C. Heaven, J.T. Schriempf, Eds. (SPIE-International Society of Optical Engineering, Washington, DC, 2006) p. U1011.

    Google Scholar 

  15. A.V. Zinovev, I.V. Veryovkin, J.F. Moore, M.J. Pellin, Anal. Chem. 79, 8232 (2007).

    Google Scholar 

  16. R.C. Shea, C.J. Petzold, J.L. Campbell, S. Li, D.J. Aaserud, H.I. Kenttämaa, Anal. Chem. 78, 6133 (2006).

    Google Scholar 

  17. V.V. Golovlev, S.L. Allman, W.R. Garrett, C.H. Chen, Appl. Phys. Lett. 71, 852 (1997).

    Google Scholar 

  18. C.R. Calvert, L. Belshaw, M.J. Duffy, O. Kelly, R.B. King, A.G. Smyth, T.J. Kelly, J.T. Costello, D.J. Timson, W.A. Bryan, T. Kierspel, P. Rice, I.C.E. Turcu, C.M. Cacho, E. Springate, I.D. Williams, J.B. Greenwood, Phys. Chem. Chem. Phys. 14, 6289 (2012).

    Google Scholar 

  19. Z. Huang, T. Ossenbrüggen, I. Rubinsky, M. Schust, D.A. Horke, J. Küpper, Anal. Chem. 90, 3920 (2018).

    Google Scholar 

  20. A.V. Zinovev, J.F. Moore, M.J. Pellin, I.V. Veryovkin, 2007 Quantum Electronics and Laser Science Conference (Baltimore, 2007).

  21. J.M. Vadillo, J.M. Fernández Romero, C. Rodríguez, J.J. Laserna, Surf. Interface Anal. 27, 1009 (1999).

    Google Scholar 

  22. D.J. Borton, L.M. Amundson, M.R. Hurt, A. Dow, J.T. Madden, G.J. Simpson, H.I. Kenttämaa, Anal. Chem. 85, 5720 (2013).

    Google Scholar 

  23. T.M. Jarrell, B.C. Owen, J.S. Riedeman, B.M. Prentice, C.J. Pulliam, J. Max, H.I. Kenttämaa, J. Am. Soc. Mass Spectrom. 28, 1091 (2017).

    Google Scholar 

  24. Z. Jin, S. Daiya, H.I. Kenttämaa, Int. J. Mass Spectrom. 301, 234 (2011).

    Google Scholar 

  25. D.S. Pinkston, P. Duan, V.A. Gallardo, S.C. Habicht, X. Tan, K. Qian, M. Gray, K. Müllen, H.I. Kenttämaa, Energy Fuels 23, 5564 (2009).

    Google Scholar 

  26. S.C. Habicht, L.M. Amundson, P. Duan, N.R. Vinueza, H.I. Kenttämaa, Anal. Chem. 82, 608 (2010).

    Google Scholar 

  27. L. Jia, J. Weng, Z. Zhou, F. Qi, W. Guo, L. Zhao, J. Chen, Rev. Sci. Instrum. 83, 026105 (2012).

    Google Scholar 

  28. S. Banerjee, S. Mazumdar, Int. J. Anal. Chem. 2012, 282574 (2012).

    Google Scholar 

  29. S.-C. Cheng, T.-L. Cheng, H.-C. Chang, J. Shiea, Anal. Chem. 81, 868 (2009).

    Google Scholar 

  30. J. Gao, D.J. Borton, B.C. Owen, Z. Jin, M. Hurt, L.M. Amundson, J.T. Madden, K. Qian, H.I. Kenttämaa, J. Am. Soc. Mass Spectrom. 22, 531 (2011).

    Google Scholar 

  31. L. Nyadong, J.P. Quinn, C.S. Hsu, C.L. Hendrickson, R.P. Rodgers, A.G. Marshall, Anal. Chem. 84, 7131 (2012).

    Google Scholar 

  32. A. Raffaelli, A. Saba, Mass Spectrom. Rev. 22, 318 (2003).

    Google Scholar 

  33. K. Benham, R. Hodyss, F.M. Fernández, T.M. Orlando, J. Am. Soc. Mass Spectrom. 27, 1805 (2016).

    Google Scholar 

  34. A.A. Herod, Rapid Commun. Mass Spectrom. 24, 2507 (2010).

    Google Scholar 

  35. A.R. Hortal, B. Martínez-Haya, M.D. Lobato, J.M. Pedrosa, S. Lago, J. Mass Spectrom. 41, 960 (2006).

    Google Scholar 

  36. R.P. Rodgers, A.M. McKenna, Anal. Chem. 83, 4665 (2011).

    Google Scholar 

  37. D.J. Porter, P.M. Mayer, M. Fingas, Energy Fuels 18, 987 (2004).

    Google Scholar 

  38. A.G. Marshall, R.P. Rodgers, Acc. Chem. Res. 37, 53 (2004).

    Google Scholar 

  39. C.A. Hughey, R.P. Rodgers, A.G. Marshall, Anal. Chem. 74, 4145 (2002).

    Google Scholar 

  40. K.E. Crawford, L.J. Campbell, M.N. Fiddler, P. Duan, K. Qian, M.L. Gorbaty, H.I. Kenttämaa, Anal. Chem. 77, 7916 (2005).

    Google Scholar 

  41. K. Qian, G.J. Dechert, Anal. Chem. 74, 3977 (2002).

    Google Scholar 

  42. J.H. Gross, Mass Spectrometry: A Textbook, 2nd ed. (Springer, Heidelberg, Germany, 2004).

    Google Scholar 

  43. G. Klesper, F.W. Röllgen, J. Mass Spectrom. 31, 383 (1996).

    Google Scholar 

  44. C. Jin, J. Viidanoja, M. Li, Y. Zhang, E. Ikonen, A. Root, M. Romanczyk, J. Manheim, E. Dziekonski, H.I. Kenttämaa, Anal. Chem. 88, 10592 (2016).

    Google Scholar 

  45. Y. Briker, Z. Ring, A. Iacchelli, N. McLean, P.M. Rahimi, C. Fairbridge, R. Malhotra, M.A. Coggiola, S.E. Young, Energy Fuels 15, 23 (2001).

    Google Scholar 

  46. Y. Briker, Z. Ring, A. Iacchelli, N. McLean, C. Fairbridge, R. Malhotra, M.A. Coggiola, S.E. Young, Energy Fuels 15, 996 (2001).

    Google Scholar 

  47. P. Duan, K. Qian, S.C. Habicht, D.S. Pinkston, M. Fu, H.I. Kenttämaa, Anal. Chem. 80, 1847 (2008).

    Google Scholar 

  48. J.L. Campbell, K.E. Crawford, H.I. Kenttämaa, Anal. Chem. 76, 959 (2004).

    Google Scholar 

  49. P. Duan, M. Fu, D.S. Pinkston, S.C. Habicht, H.I. Kenttämaa, J. Am. Chem. Soc. 129, 9266 (2007).

    Google Scholar 

  50. J.L. Campbell, M.N. Fiddler, K.E. Crawford, P. P. Gqamana, H.I. Kenttämaa, Anal. Chem. 77, 4020 (2005).

    Google Scholar 

  51. C.S. Hsu, Prepr. Symp. Am. Chem. Soc. Div. Fuel Chem. 56, 421 (2011).

    Google Scholar 

  52. N.J. Demarais, Z. Yang, T.P. Snow, V.M. Bierbaum, Astrophys. J. 784, 25/1 (2014).

    Google Scholar 

  53. J. Chen, L. Jia, L. Zhao, X. Lu, W. Guo, J. Weng, F. Qi, Energy Fuels 27, 2010 (2013).

    Google Scholar 

  54. C.J. Petzold, L.E. Ramírez-Arizmendi, J.L. Heidbrink, J. Pérez, H.I. Kenttämaa, J. Am. Soc. Mass Spectrom. 13, 192 (2002).

    Google Scholar 

  55. J. Somuramasami, H.I. Kenttämaa, J. Am. Soc. Mass Spectrom. 18, 525 (2007).

    Google Scholar 

  56. J. Liu, C.J. Petzold, L.E. Ramirez-Arizmendi, J. Perez, H.I. Kenttämaa, J. Am. Chem. Soc. 127, 12758 (2005).

    Google Scholar 

  57. S. Li, M. Fu, S.C. Habicht, G.O. Pates, J.J. Nash, H.I. Kenttämaa, J. Org. Chem. 74, 7724 (2009).

    Google Scholar 

  58. C. Hazelwood, M.J. Davies, B.C. Gilbert, J.E. Packer, J. Chem. Soc. Perkin Trans. 2, 2167 (1995).

    Google Scholar 

  59. C.L. Hawkins, M.J. Davies, J. Chem. Soc. Perkins Trans. 2, 1937 (1998).

    Google Scholar 

  60. H.A. Headlam, A. Mortimer, C.J. Easton, M.J. Davies, Chem. Res. Toxicol. 13, 1087 (2000).

    Google Scholar 

  61. L. Yang, J.J. Nash, M.J. Yurkovich, Z. Jin, N.R. Vinueza, H.I. Kenttämaa, Org. Lett. 10, 1889 (2008).

    Google Scholar 

  62. I. Bald, I. Dąbkowska, E. Illenberger, Angew. Chem. Int. Ed. Engl. 120, 8646 (2008).

    Google Scholar 

  63. F. Remacle, R.D. Levine, Proc. Natl. Acad. Sci. U.S.A. 103, 6793 (2006).

    Google Scholar 

  64. C.R. Calvert, O. Kelly, M.J. Duffy, L. Belshaw, R.B. King, I.D. Williams, J.B. Greenwood, J. Phys. Conf. Ser. 388, 012032 (2012).

    Google Scholar 

  65. W.-P. Peng, Y.-C. Yang, M.-W. Kang, Y.-K. Tzeng, Z. Nie, H.-C. Chang, W. Chang, C.-H. Chen, Angew. Chem. Int. Ed. Engl. 45, 1423 (2006).

    Google Scholar 

  66. W.-P. Peng, H.-C. Lin, H.-H. Lin, M. Chu, A.L. Yu, H.-C. Chang, C.-H. Chen, Angew. Chem. Int. Ed. Engl. 119, 3939 (2007).

    Google Scholar 

  67. W.-P. Peng, Y.-C. Yang, C.-W. Lin, H.-C. Chang, Anal. Chem. 77, 7084 (2005).

    Google Scholar 

  68. H. Kahler, B.J. Lloyd, Science 114, 34 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zhang, Y., Lei, HR. et al. Laser-induced acoustic desorption. MRS Bulletin 44, 372–381 (2019). https://doi.org/10.1557/mrs.2019.105

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.105

Navigation