Skip to main content
Log in

Electrocaloric effects in multilayer capacitors for cooling applications

  • Caloric Effects in Ferroic Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

For more than a century, humankind has achieved refrigeration by exploiting volatile gases that harm the environment when released to the atmosphere. More recently, the observation of electrocaloric effects in commercial multilayer capacitors has inspired the possibility of environmentally friendly cooling. In this article, we describe electrocaloric effects in multilayer capacitors for cooling applications, compare the electrocaloric performance of existing multilayer capacitors, and discuss the improvements required for practical cooling devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. X. Moya, S. Kar-Narayan, N.D. Mathur, Nat. Mater. 13, 439 (2014).

    Google Scholar 

  2. T. Correia, Q. Zhang, Eds., Electrocaloric Materials (Springer-Verlag, Berlin, 2014).

    Google Scholar 

  3. S.G. Lu, Q. Zhang, Adv. Mater. 21, 1983 (2009).

    Google Scholar 

  4. J.F. Scott, Annu. Rev. Mater. Res. 41, 229 (2011).

    Google Scholar 

  5. M. Valant, Prog. Mater. Sci. 57, 980 (2012).

    Google Scholar 

  6. X. Li, S.-G. Lu, X.-Z. Chen, H. Gu, X.-S. Qian, Q.M. Zhang, J. Mater. Chem. C 23, 1 (2013).

    Google Scholar 

  7. S.P. Alpay, J. Mantese, S. Trolier-McKinstry, Q. Zhang, R.W. Whatmore, MRS Bull. 39, 1099 (2014).

    Google Scholar 

  8. Z. Kutnjak, B. Rožič, R. Pirc, “Electrocaloric Effect: Theory, Measurements, and Applications,” in Wiley Encyclopedia of Electrical and Electronics Engineering, J. Webster, Ed. (Wiley, 2015).

  9. G.V. Brown, J. Appl. Phys. 47, 3673 (1976).

    Google Scholar 

  10. S. Crossley, B. Nair, R.W. Whatmore, X. Moya, N.D. Mathur, (forthcoming).

  11. S. Kar-Narayan, N.D. Mathur, Appl. Phys. Lett. 95, 242903 (2009).

    Google Scholar 

  12. www.murata.com/en-eu/products/emiconfun/capacitor/2011/06/28/en-20110628-p1.

  13. H. Kishi, Y. Mizuno, H. Chazono, Jpn. J. Appl. Phys. 42, 1 (2003).

    Google Scholar 

  14. W.N. Lawless, C.F. Clark, Phys. Rev. B Condens. Matter 36, 459 (1987).

    Google Scholar 

  15. A. Mischenko, N. Mathur, “Solid State Electrocaloric Cooling Device with Heat Switches and Method of Cooling,” GB Patent PCT/GB2005/050207 (2005).

  16. H. Gu, X. Qian, X. Li, B. Craven, W. Zhu, A. Cheng, S.C. Yao, Q.M. Zhang, Appl. Phys. Lett. 102, 122904 (2013).

    Google Scholar 

  17. S. Kar-Narayan, N.D. Mathur, J. Phys. D Appl. Phys. 43, 032002 (2010).

    Google Scholar 

  18. Y. Bai, G. Zheng, S. Shi, Appl. Phys. Lett. 96, 192902 (2010).

    Google Scholar 

  19. S. Kar-Narayan, S. Crossley, X. Moya, V. Kovacova, J. Abergel, A. Bontempi, N. Baier, E. Defay, N.D. Mathur, Appl. Phys. Lett. 102, 032903 (2013).

    Google Scholar 

  20. S. Hirose, T. Usui, S. Crossley, B. Nair, A. Ando, X. Moya, N.D. Mathur, APL Mater. 4, 064105 (2016).

    Google Scholar 

  21. Y. Liu, H. Strozyk, B. Dkhil, E. Defay, Appl. Phys. Lett. 109, 212902 (2016).

    Google Scholar 

  22. C. Molin, S. Gebhardt, Ferroelectrics 498, 111 (2016).

    Google Scholar 

  23. T. Usui, S. Hirose, A. Ando, S. Crossley, B. Nair, X. Moya, N.D. Mathur, J. Phys. D Appl. Phys. 50, 424002 (2017).

    Google Scholar 

  24. R. Faye, H. Strozyk, B. Dkhil, E. Defay, J. Phys. D Appl. Phys. 50, 464002 (2017).

    Google Scholar 

  25. L. Fulanović, J. Koruzac, N. Novak, F. Weyland, B. Malič, V. Bobnar, J. Eur. Ceram. Soc. 37, 5105 (2017).

    Google Scholar 

  26. L. Fulanović, S. Drnovšek, H. Uršič, M. Vrabelj, D. Kuščer, K. Makarovič, V. Bobnar, Z. Kutnjak, B. Malič, J. Eur. Ceram. Soc. 37, 599 (2017).

    Google Scholar 

  27. Y. Jia, Y.S. Ju, Appl. Phys. Lett. 100, 242901 (2012).

    Google Scholar 

  28. P. Blumenthal, C. Molin, S. Gebhardt, A. Raatz, Ferroelectrics 497, 1 (2016).

    Google Scholar 

  29. Y.D. Wang, S.J. Smullin, M.J. Sheridan, Q. Wang, C. Eldershaw, D.E. Schwartz, Appl. Phys. Lett. 107, 134103 (2015).

    Google Scholar 

  30. D. Sette, A. Asseman, M. Gérard, H. Strozyk, R. Faye, E. Defay, APL Mater. 4, 091101 (2016).

    Google Scholar 

  31. T. Zhang, X.-S. Qian, H. Gu, Y. Hou, Q.M. Zhang, Appl. Phys. Lett. 110, 243503 (2017).

    Google Scholar 

  32. F. Weyland, T. Eisele, S. Steiner, T. Frömling, G.A. Rossetti Jr., J. Rödel, N. Novak, J. Eur. Ceram. Soc. 38, 551 (2018).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the ERC Starting Grant No. 680032. X.M. is grateful for support from The Royal Society. E.D. thanks the Luxembourg National Research Fund (FNR) that supported this work through COFERMAT Grant No. FNR/P12/4853155/Kreisel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Moya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moya, X., Defay, E., Mathur, N.D. et al. Electrocaloric effects in multilayer capacitors for cooling applications. MRS Bulletin 43, 291–294 (2018). https://doi.org/10.1557/mrs.2018.68

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.68

Navigation