Skip to main content

Advertisement

Log in

Piezo-phototronic effect on optoelectronic nanodevices

  • Piezotronics and Piezo-Phototronics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Optoelectronic nanoscale devices have wide applications in chemical, biological, and medical technologies. Improving the performance efficiency of these devices remains a challenge. Performance is mainly dictated by the structure and characteristics of the semiconductor materials. Once a nanodevice is fabricated, its efficiency is determined. The key to improving efficiency is to control the interfaces in the device. In this article, we describe how the piezo-phototronic effect can be effectively utilized to modulate the band at the interface of a metal/semiconductor contact or a pn junction to enhance the external efficiency of many optoelectronic nanoscale devices such as photodetectors, solar cells, and light-emitting diodes (LEDs). The piezo-phototronic effect can be highly effective at enhancing the efficiency of energy conversion in today’s green and renewable energy technology without using the sophisticated nanofabrication procedures that have high cost and complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. B.J. Matterson, J.M. Lupton, A.F. Safonov, M.G. Salt, W.L. Barnes, I.D.W. Samuel, Adv. Mater. 13 (2), 123 (2001).

    Google Scholar 

  2. D.H. Kim, C.O. Cho, Y.G. Roh, H. Jeon, Y.S. Park, J. Cho, J.S. Im, C. Sone, Y. Park, W.J. Choi, Q.H. Park, Appl. Phys. Lett. 87 (20), 203508 (2005).

    Google Scholar 

  3. K. Saxena, V.K. Jain, D.S. Mehta, Opt. Mater. 32 (1), 221 (2009).

    Google Scholar 

  4. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, K. Leo, Nature 459 (7244), 234 (2009).

    Google Scholar 

  5. M.K. Kwon, J.Y. Kim, B.H. Kim, I.K. Park, C.Y. Cho, C.C. Byeon, S.J. Park, Adv. Mater. 20 (7), 1253 (2008).

    Google Scholar 

  6. Z.L. Wang, W. Wu, C. Falconi, MRS Bull. 43 (12), xxx (2018).

    Google Scholar 

  7. Z.L. Wang, Piezotronics and Piezo-phototronics (Springer-Verlag, Berlin, 2012).

  8. Q. Yang, X. Guo, W.H. Wang, Y. Zhang, S. Xu, D.H. Lien, Z.L. Wang, ACS Nano 4 (10), 6285 (2010).

    Google Scholar 

  9. C.F. Pan, M.X. Chen, R.M. Yu, Q. Yang, Y.F. Hu, Y. Zhang, Z.L. Wang, Adv. Mater. 28 (8), 1535 (2016).

    Google Scholar 

  10. J.J. Qi, Y.W. Lan, A.Z. Stieg, J.H. Chen, Y.L. Zhong, L.J. Li, C.D. Chen, Y. Zhang, K.L. Wang, Nat. Commun. 6, 7430 (2015).

    Google Scholar 

  11. M.X. Chen, C.F. Pan, T.P. Zhang, X.Y. Li, R.R. Liang, Z.L. Wang, ACS Nano 10 (6), 6074 (2016).

    Google Scholar 

  12. Y.F. Hu, Y.L. Chang, P. Fei, R.L. Snyder, Z.L. Wang, ACS Nano 4 (2), 1234 (2010).

    Google Scholar 

  13. W.Z. Wu, X.N. Wen, Z.L. Wang, Science 340, 952 (2013).

    Google Scholar 

  14. Z.L. Wang, W.Z. Wu, Natl. Sci. Rev. 1, 62 (2014).

    Google Scholar 

  15. W.Z. Wu, L. Wang, Y.L. Li, F. Zhang, L. Lin, S.M. Niu, D. Chenet, X. Zhang, Y.F. Hao, T.F. Heinz, J. Hone, Z.L. Wang, Nature 514, 470 (2014).

    Google Scholar 

  16. R.M. Yu, S.M. Niu, C.F. Pan, Z.L. Wang, Nano Energy 14, 312 (2015).

    Google Scholar 

  17. R.M. Yu, X.F. Wang, W.Z. Wu, C.F. Pan, Y. Bando, N. Fukata, Y.F. Hu, W.B. Peng, Y. Ding, Z.L. Wang, Adv. Funct. Mater. 25, 5277 (2015).

    Google Scholar 

  18. Z.L. Wang, J. Phys. Chem. Lett. 1, 1388 (2010).

    Google Scholar 

  19. Z.F. Zhao, X. Pu, C.B. Han, C.H. Du, L.X. Li, C.Y. Jiang, W.G. Hu, Z.L. Wang, ACS Nano 9 (8), 8578 (2015).

    Google Scholar 

  20. K.C. Pradel, W.Z. Wu, Y.S. Zhou, X.N. Wen, Y. Ding, Z.L. Wang, Nano Lett. 13 (6), 2647 (2013).

    Google Scholar 

  21. R.M. Yu, X.F. Wang, W.B. Peng, W.Z. Wu, Y. Ding, S.T. Li, Z.L. Wang, ACS Nano 9, 9822 (2015).

    Google Scholar 

  22. R.M. Yu, L.N. Dong, C.F. Pan, S.M. Niu, H.F. Liu, W. Liu, S.J. Chua, D.Z. Chi, Z.L. Wang, Adv. Mater. 24, 3532 (2012).

    Google Scholar 

  23. Z.L. Wang, Adv. Funct. Mater. 24, 4632 (2012).

    Google Scholar 

  24. L. Dong, S. Niu, C.F. Pan, R.M. Yu, Y. Zhang, Z.L. Wang, Adv. Mater. 24, 5470 (2012).

    Google Scholar 

  25. F. Zhang, Y. Ding, Y. Zhang, X.L. Zhang, Z.L. Wang, ACS Nano 6 (10), 9229 (2012).

    Google Scholar 

  26. X. Han, W.M. Du, R.M. Yu, C.F. Pan, Z.L. Wang, Adv. Mater. 27, 7963 (2015).

    Google Scholar 

  27. R.M. Yu, C.F. Pan, Y.F. Hu, L. Li, H.F. Liu, W. Liu, S.J. Chua, D.Z. Chi, Z.L. Wang, Nano Res. 6, 758 (2013).

    Google Scholar 

  28. Y.J. Dai, X.F. Wang, W.B. Peng, C.S. Wu, Y. Ding, K. Dong, Z.L. Wang, Nano Energy 44, 311 (2018).

    Google Scholar 

  29. Y.J. Dai, X.F. Wang, W.B. Peng, H.Y. Zou, R.M. Yu, Y. Ding, C.S. Wu, Z.L. Wang, ACS Nano 11, 7118 (2017).

    Google Scholar 

  30. M.X. Chen, B. Zhao, G.F. Hu, X.S. Fang, H. Wang, L. Wang, J. Luo, X. Han, X.D. Wang, C.F. Pan, Z.L. Wang, Adv. Funct. Mater. 27, 1700264 (2018).

    Google Scholar 

  31. G.Z. Dai, H.Y. Zou, X.F. Wang, Y.K. Zou, P.H. Wang, Y. Ding, Y. Zhang, J.L. Yang, Z.L. Wang, ACS Photonics 4 (10), 2495 (2017).

    Google Scholar 

  32. K. Zhang, M.Z. Peng, W. Wu, J.M. Guo, G.Y. Gao, Y.D. Liu, J.Z. Kou, R.M. Wen, Y. Lei, A.F. Yu, Y. Zhang, J.Y. Zhai, Z.L. Wang, Mater. Horiz. 4, 274 (2017).

    Google Scholar 

  33. L.P. Zhu, L.F. Wang, F. Xue, L.B. Chen, J.Q. Fu, X.L. Feng, T.F. Li, Z.L. Wang, Adv. Sci. 4, 1600185 (2017).

    Google Scholar 

  34. H. Tang, B. Liu, T. Wang, J. Phys. D Appl. Phys. 48, 025101 (2015).

    Google Scholar 

  35. C.F. Pan, S.M. Niu, Y. Ding, L. Dong, R.M. Yu, Y. Liu, G. Zhu, Z.L. Wang, Nano Lett. 12, 3302 (2012).

    Google Scholar 

  36. C.Y. Jiang, L. Jing, X. Huang, M.M. Liu, C.H. Du, T. Liu, X. Pu, W.G. Hu, Z.L. Wang, ACS Nano 11, 9405 (2017).

    Google Scholar 

  37. H.Y. Zou, X.G. Li, W.B. Peng, W.Z. Wu, R.M. Yu, C.S. Wu, W.B. Ding, F. Hu, R.Y. Liu, Y.L. Zi, Z.L. Wang, Adv. Mater. 29, 1701412 (2017).

    Google Scholar 

  38. G.F. Hu, W.X. Guo, X.N. Yang, R.R. Zhou, C.F. Pan, Z.L. Wang, Nano Energy 23, 27 (2016).

    Google Scholar 

  39. X.N. Wen, W.Z. Wu, Z.L. Wang, Nano Energy 2, 1093 (2013).

    Google Scholar 

  40. L.P. Zhu, L.F. Wang, C.F. Pan, L.B. Chen, F. Xue, B.D. Chen, L.J. Yang, L. Su, Z.L. Wang, ACS Nano 11 (2), 1894 (2017).

    Google Scholar 

  41. Z.L. Wang, Nano Today 5 (6), 540 (2010).

    Google Scholar 

  42. Q. Yang, W.H. Wang, S. Xu, Z.L. Wang, Nano Lett. 11 (9), 4012 (2011).

    Google Scholar 

  43. Y. Liu, S.M. Niu, Q. Yang, B.D.B. Klein, Y.S. Zhou, Z.L. Wang, Adv. Mater. 26 (42), 7209 (2015).

    Google Scholar 

  44. Q. Yang, Y. Liu, C.F. Pan, J. Chen, X.N. Wen, Z.L. Wang, Nano Lett. 13 (2), 607 (2013).

    Google Scholar 

  45. C.F. Wang, R.R. Bao, K. Zhao, T.P. Zhang, L. Dong, C.F. Pan, Nano Energy 14, 364 (2015).

    Google Scholar 

  46. M.L. Que, X.D. Wang, Y.Y. Peng, C.F. Pan, Chin. Phys. B 26 (6), 067301 (2017).

    Google Scholar 

  47. T.P. Zhang, R.R. Liang, L. Dong, J. Wang, J. Xu, C.F. Pan, Nano Res. 8 (8), 2676 (2015).

    Google Scholar 

  48. C.F. Pan, J. Zhu, J. Mater. Chem. 19, 869 (2009).

    Google Scholar 

  49. X.Y. Li, R.R. Liang, J. Tao, Q.M. Xu, Z.C. Peng, X. Han, X.D. Wang, C.F. Wang, J. Zhu, C.F. Pan, Z.L. Wang, ACS Nano 11 (4), 3883 (2017).

    Google Scholar 

  50. R.R. Bao, C.F. Wang, Z.C. Peng, C. Ma, L. Dong, C.F. Pan, ACS Photonics 4, 1344 (2017).

    Google Scholar 

  51. X.F. Wang, W.B. Peng, R.M. Yu, H.Y. Zou, Y.J. Dai, Y.L. Zi, C.S. Wu, S.T. Li, Z.L. Wang, Nano Lett. 17, 3718 (2017).

    Google Scholar 

  52. X. Huang, C.Y. Jiang, C.H. Du, L. Jing, M.M. Liu, W.G. Hu, Z.L. Wang, ACS Nano 10, 11420 (2016).

    Google Scholar 

  53. Q.L. Hua, J.L. Sun, H.T. Liu, R.R. Bao, R.M. Yu, J.Y. Zhai, C.F. Pan, Z.L. Wang, Nat. Commun. 9, 244 (2018).

    Google Scholar 

  54. X.L. Zhao, Q.L. Hua, R.M. Yu, Y. Zhang, C.F. Pan, Adv. Electron. Mater. 1, 1500142 (2015).

    Google Scholar 

  55. X.Y. Li, M.X. Chen, R.M. Yu, T.P. Zhang, D.S. Song, R.R. Liang, Q.L. Zhang, S.B. Cheng, L. Dong, A.L. Pan, Z.L. Wang, J. Zhu, C.F. Pan, Adv. Mater. 27, 4447 (2015).

    Google Scholar 

  56. C.F. Wang, D.F. Peng, J. Zhao, R.R. Bao, T.F. Li, L. Tian, L. Dong, C.Y. Shen, C.F. Pan, Small 12 (41), 5734 (2016).

    Google Scholar 

  57. R.R. Bao, C.F. Wang, L. Dong, C.Y. Shen, K. Zhao, C.F. Pan, Nanoscale 8, 8078 (2016).

    Google Scholar 

  58. C.F. Pan, L. Dong, G. Zhu, S.M. Niu, R.M. Yu, Q. Yang, Y. Liu, Z.L. Wang, Nat. Photonics 7, 752 (2013).

    Google Scholar 

  59. R.R. Bao, C.F. Wang, L. Dong, R.M. Yu, K. Zhao, Z.L. Wang, C.F. Pan, Adv. Funct. Mater. 25, 2884 (2015).

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the National Key R&D Project by the Minister of Science and Technology, China (2016YFA0202703), National Natural Science Foundation of China (Nos. 51622205, 61675027, 51432005, 61505010, and 51502018), Beijing City Committee of Science and Technology (Z171100002017019 and Z181100004418004), Beijing Natural Science Foundation (4181004, 4182080, 4184110, and 2184131), and Zhejiang Provincial Natural Science Foundation of China (No. R17F050003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongrong Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, R., Hu, Y., Yang, Q. et al. Piezo-phototronic effect on optoelectronic nanodevices. MRS Bulletin 43, 952–958 (2018). https://doi.org/10.1557/mrs.2018.295

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.295

Navigation