Skip to main content

Advertisement

Log in

Toward affordable and sustainable use of precious metals in catalysis and nanomedicine

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Precious metals represent some of the least abundant elements in the earth’s crust. There is an urgent need to maximize the utilization efficiency of these metals and thereby attain affordable and sustainable products. One approach for achieving this goal is based on the development of hollow nanocrystals with a well-controlled surface structure, together with a wall thickness kept below 2 nm, or roughly 10 layers of atoms. The hollow structure eliminates the waste of interior atoms and creates an inner surface, while the controllable surface structures contribute to the optimization of catalytic activity and selectivity. In this article, we begin with a brief introduction to two methods that have been developed for the synthesis of hollow nanocrystals: the first relying on the galvanic replacement with a sacrificial template, and the second involving layer-by-layer deposition of metal atoms followed by etching. We then showcase some remarkable properties and applications of this novel class of nanostructures, including their use as effective catalysts for energy conversion, photoresponsive carriers for controlled release and drug delivery, and theranostic agents. A discussion of the existing barriers to their commercialization is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. World Economic Forum, “Global Future Councils (2018),” https://www.weforum.org/communities/global-future-councils/communities/global-future-councils.

  2. S.A. Cotton, Chemistry of Precious Metals (Springer, New York, 2012).

    Google Scholar 

  3. F. Zereini, C.L.S. Wiseman, Platinum Metals in the Environment (Springer, Berlin, Germany, 2015).

    Google Scholar 

  4. APMEX, “Platinum Prices,” https://www.apmex.com/spotprices/platinumprice (accessed June 2018).

  5. M.E. Scofield, H. Liu, S.S. Wong, Chem. Soc. Rev. 44, 5836 (2015).

    Google Scholar 

  6. M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Chem. Rev. 116, 3594 (2016).

    Google Scholar 

  7. E. Prior, “How Much Gold Is There in the World?” (April 1, 2013), http://www.bbc.com/news/magazine-21969100.

  8. BBC, “Gold Coin of Croesus,” http://www.bbc.co.uk/ahistoryoftheworld/objec ts/7cEz771FSeOLptGIElaquA.

  9. D.B. Harden, J.M.C. Toynbee, Archaeologia 97, 179 (1959).

    Google Scholar 

  10. Architectural Stained Glass Inc., “A History of Stained Glass,” http://archstglassinc.com/resources/a-brief-history-of-stained-glass.

  11. M. Faraday, Trans. R. Soc. Lond. 147, 145 (1857).

    Google Scholar 

  12. X. Yang, M. Yang, B. Pang, V. Madeline, Y. Xia, Chem. Rev. 115, 10410 (2015).

    Google Scholar 

  13. T. Ishida, M. Haruta, Angew. Chem. Int. Ed. Engl. 46, 7154 (2007).

    Google Scholar 

  14. D. Kim, Y.Y. Jeong, S. Jon, ACS Nano 4, 3698 (2010).

    Google Scholar 

  15. M. Zhao, X. Wang, X. Yang, K.D. Gilroy, D. Qin, Y. Xia, Adv. Mater. 30, 1809156 (2018).

    Google Scholar 

  16. S.E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C.M. Cobley, Y. Xia, Acc. Chem. Res. 41, 1587 (2008).

    Google Scholar 

  17. L. Zhang, L.T. Roling, X. Wang, M. Vara, M. Chi, J. Liu, S. Choi, J. Park, J.A. Herron, Z. Xie, M. Mavrikakis, Y. Xia, Science 349, 412 (2015).

    Google Scholar 

  18. X. Wang, L. Figueroa-Cosme, X. Yang, M. Luo, J. Liu, Z. Xie, Y. Xia, Nano Lett. 16, 1467 (2016).

    Google Scholar 

  19. D.S. He, D. He, J. Wang, Y. Lin, P. Yin, X. Hong, Y. Wu, Y. Li, J. Am. Chem. Soc. 138, 1494 (2016).

    Google Scholar 

  20. Y. Xia, X. Yang, Acc. Chem. Res. 50, 450 (2017).

    Google Scholar 

  21. Y. Dai, P. Lu, Z. Cao, C.T. Campbell, Y. Xia, Chem. Soc. Rev. 47, 4314 (2018).

    Google Scholar 

  22. M.J. Allen, C.C. Tung, R.B. Kaner, Chem. Rev. 110, 132 (2010).

    Google Scholar 

  23. X. Yin, X. Liu, Y. Pan, K.A. Walsh, H. Yang, Nano Lett. 14, 7188 (2014).

    Google Scholar 

  24. P.F. Siril, L. Ramos, P. Beaunier, P. Archirel, A. Etcheberry, H. Remita, Chem. Mater. 21, 5170 (2009).

    Google Scholar 

  25. H. Duan, N. Yan, R. Yu, C. Chang, G. Zhou, H. Hu, H. Rong, Z. Niu, J. Mao, H. Asakura, T. Tanaka, P.J. Dyson, J. Li, Y. Li, Nat. Commun. 5, 3093 (2014).

    Google Scholar 

  26. X. Kong, K. Xu, C. Zhang, J. Dai, S.N. Oliaee, L. Li, X. Zeng, C. Wu, Z. Peng, ACS Catal. 6, 1487 (2016).

    Google Scholar 

  27. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature 458, 872 (2009).

    Google Scholar 

  28. Y. Sun, Y. Xia, Science 298, 2176 (2002).

    Google Scholar 

  29. X. Xia, Y. Wang, A. Ruditskiy, Y. Xia, Adv. Mater. 25, 6313 (2013).

    Google Scholar 

  30. J. Chen, J.M. McLellan, A. Siekkinen, Y. Xiong, Z. Li, Y. Xia, J. Am. Chem. Soc. 128, 14776 (2006).

    Google Scholar 

  31. J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z. Li, Y. Xia, Nano Lett. 5, 2058 (2005).

    Google Scholar 

  32. X. Yang, L.T. Roling, M. Vara, A.O. Elnabawy, M. Zhao, Z.D. Hood, S. Bao, M. Mavrikakis, Y. Xia, Nano Lett. 16, 6644 (2016).

    Google Scholar 

  33. M. Jin, H. Liu, H. Zhang, Z. Xie, J. Liu, Y. Xia, Nano Res. 4, 83 (2011).

    Google Scholar 

  34. M. Jin, H. Zhang, Z. Xie, Y. Xia, Energy Environ. Sci. 5, 6352 (2012).

    Google Scholar 

  35. H. Huang, Y. Wang, A. Ruditskiy, H.-C. Peng, X. Zhao, L. Zhang, J. Liu, Z. Ye, Y. Xia, ACS Nano 8, 7041 (2014).

    Google Scholar 

  36. X. Xia, S. Xie, M. Liu, H.-C. Peng, N. Lu, J. Wang, M.J. Kim, Y. Xia, Proc. Natl. Acad. Sci. U.S.A. 110, 6669 (2013).

    Google Scholar 

  37. X. Wang, M. Vara, M. Luo, H. Huang, A. Ruditskiy, J. Park, S. Bao, J. Liu, J. Howe, M. Chi, Z. Xie, Y. Xia, J. Am. Chem. Soc. 137, 15036 (2015).

    Google Scholar 

  38. H. Huang, A. Ruditskiy, S. Choi, L. Zhang, J. Liu, Z. Ye, Y. Xia, ACS Appl. Mater. Interfaces 9, 31203 (2017).

    Google Scholar 

  39. X. Wang, M. Luo, H. Huang, M. Chi, J. Howe, Z. Xie, Y. Xia, ChemNanoMat 2, 1086 (2016).

    Google Scholar 

  40. X. Sun, J. Kim, K.D. Gilroy, J. Liu, T.A.F. König, D. Qin, ACS Nano 10, 8019 (2016).

    Google Scholar 

  41. X. Sun, X. Yang, Y. Zhang, Y. Ding, D. Su, D. Qin, Nanoscale 9, 15107 (2017).

    Google Scholar 

  42. U. Aslam, S. Chavez, S. Linic, Nat. Nanotechnol. 12, 1000 (2017).

    Google Scholar 

  43. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105, 1103 (2005).

    Google Scholar 

  44. J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M.J. Welch, Y. Xia, Small 6, 811 (2010).

    Google Scholar 

  45. M.S. Yavuz, Y. Cheng, J. Chen, C.M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K.H. Song, A.G. Schwartz, L.V. Wang, Y. Xia, Nat. Mater. 8, 935 (2009).

    Google Scholar 

  46. S. Shen, C. Zhu, D. Huo, M. Yang, J. Xue, Y. Xia, Angew. Chem. Int. Ed. Engl. 56, 8801 (2017).

    Google Scholar 

  47. G.D. Moon, S.-W. Choi, X. Cai, W. Li, E.C. Cho, U. Jeong, L.V. Wang, Y. Xia, J. Am. Chem. Soc. 133, 4762 (2011).

    Google Scholar 

  48. H. Cheng, D. Huo, C. Zhu, S. Shen, W. Wang, H. Li, Z. Zhu, Y. Xia, Biomaterials 178, 517 (2018).

    Google Scholar 

  49. T. Sun, Y. Wang, Y. Wang, J. Xu, X. Zhao, S. Vangveravong, R.H. Mach, Y. Xia, Adv. Healthc. Mater. 3, 1283 (2014).

    Google Scholar 

  50. M. Yang, D. Huo, K. Gilroy, X. Sun, D. Sultan, H. Luehmann, L. Detering, S. Li, D. Qin, Y. Liu, Y. Xia, ChemNanoMat 3, 44 (2017).

    Google Scholar 

  51. Y. Yang, J. Liu, Z. Fu, D. Qin, J. Am. Chem. Soc. 136, 8153 (2014).

    Google Scholar 

  52. M. Zhao, L. Figueroa-Cosme, A.O. Elnabawy, M. Vara, X. Yang, L.T. Roling, M. Chi, M. Mavrikakis, Y. Xia, Nano Lett. 16, 5310 (2016).

    Google Scholar 

  53. M. Zhao, A.O. Elnabawy, M. Vara, L. Xu, Z.D. Hood, X. Yang, K.D. Gilroy, L. Figueroa-Cosme, M. Chi, M. Mavrikakis, Y. Xia, Chem. Mater. 29, 9227 (2017).

    Google Scholar 

  54. M. Zhao, X. Lang, M. Vara, A.O. Elnabawy, K.D. Gilroy, Z.D. Hood, S. Zhou, L. Figueroa-Cosme, M. Chi, Y. Xia, ACS Catal. 8, 6948 (2018).

    Google Scholar 

  55. S. Xie, S.-I. Choi, N. Lu, L.T. Roling, J.A. Herron, L. Zhang, J. Park, J. Wang, M.J. Kim, Z. Xie, M. Mavrikakis, Y. Xia, Nano Lett. 14, 3570 (2014).

    Google Scholar 

  56. J. Park, L. Zhang, S. Choi, L.T. Roling, N. Lu, J.A. Herron, S. Xie, J. Wang, M.J. Kim, M. Mavrikakis, Y. Xia, ACS Nano 9, 2635 (2015).

    Google Scholar 

  57. X. Wang, S. Choi, L.T. Roling, M. Luo, C. Ma, L. Zhang, M. Chi, J. Liu, Z. Xie, J.A. Herron, M. Mavirkakis, Y. Xia, Nat. Commun. 6, 7594 (2015).

    Google Scholar 

  58. X. Tan, J. Luo, H. Nan, H. Zou, R. Chen, T. Shu, X. Liu, Y. Li, H. Song, S. Liao, R.R. Adzic, J. Am. Chem. Soc. 138, 1575 (2016).

    Google Scholar 

  59. M. Vara, X. Wang, J. Howe, M. Chi, Y. Xia, ChemNanoMat 4, 112 (2018).

    Google Scholar 

  60. M. Vara, L.T. Roling, X. Wang, A.O. Elnabawy, Z.D. Hood, M. Chi, M. Mavrikakis, Y. Xia, ACS Nano 11, 4571 (2017).

    Google Scholar 

  61. G. Niu, A. Ruditskiy, M. Vara, Y. Xia, Chem. Soc. Rev. 44, 5806 (2015).

    Google Scholar 

  62. L. Zhang, Y. Xia, Adv. Mater. 26, 2600 (2014).

    Google Scholar 

  63. L. Zhang, G. Niu, N. Lu, J. Wang, L. Tong, L. Wang, M.J. Kim, Y. Xia, Nano Lett. 14, 6626 (2014).

    Google Scholar 

  64. G. Niu, M. Zhou, X. Yang, J. Park, N. Lu, J. Wang, M.J. Kim, L. Wang, Y. Xia, Nano Lett. 16, 3850 (2016).

    Google Scholar 

  65. G. Niu, L. Zhang, A. Ruditskiy, L. Wang, Y. Xia, Nano Lett. 18, 3879 (2018).

    Google Scholar 

  66. H. Wang, G. Niu, M. Zhou, X. Wang, J. Park, S. Bao, M. Chi, Z. Cai, Y. Xia, ChemCatChem 8, 1658 (2016).

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by research grants from the National Science Foundation (DMR-1505400 and CHE-1505441), the National Institutes of Health (R01 CA138527), and startup funds from the Georgia Institute of Technology. We are grateful to our collaborators for their invaluable contributions to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younan Xia.

Additional information

This article is based on the MRS Medal Lecture “Toward Affordable and Sustainable Use of Noble-Metal Nanocrystals in Catalysis and Nanomedicine,” presented by Younan Xia at the 2017 MRS Fall Meeting in Boston, Mass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Zhao, M., Wang, X. et al. Toward affordable and sustainable use of precious metals in catalysis and nanomedicine. MRS Bulletin 43, 860–869 (2018). https://doi.org/10.1557/mrs.2018.262

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.262

Navigation