Skip to main content
Log in

Magnetoelectric magnetic field sensors

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Highly sensitive magnetic field sensors using magnetoelectric (ME) bulk and thin-film composites consisting of magnetostrictive and piezoelectric phases are discussed. Examples include PZT (Pb(ZrxTi1–x)O3) fibers and AlN as the piezoelectric component and amorphous magnetostrictive material, respectively, or their multilayers. Additionally, self-organized ME composites are discussed. These ME sensors offer a passive (consuming little to no power) nature, high sensitivities, large effect enhancements at mechanical resonances, and large linear dynamic ranges. At mechanical resonance, limits of detection in the fT/Hz1/2 range can be achieved. Below the mechanical resonance frequency, the sensitivity can be enhanced through frequency conversion using alternating current magnetic or electric fields or by using magnetic field-induced changes of the elastic properties, the delta-E effect, where E represents Young’s modulus. Noise floors of about 1–100 pT/Hz1/2 at a frequency of f = 1 Hz can be obtained depending on the sensor size and the operational mode. For applications in unshielded environments, approaches to suppress acoustic and vibrational cross-sensitivities are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. G. Harshé, J.P. Dougherty, R.E. Newnham, Int. J. Appl. Electromagn. Mater. 4, 145 (1993).

    Google Scholar 

  2. J. van Suchtelen, Philips Res. Rep. 27, 28 (1972).

    Google Scholar 

  3. J.V.D. Boomgaard, A.M.J.G. van Run, J.V. Suchtelen, Ferroelectrics 10, 295 (1976).

    Google Scholar 

  4. J.V.D. Boomgaard, A.M.J.G. van Run, J.V. Suchtelen, Ferroelectrics 14, 727 (1976).

    Google Scholar 

  5. M. Bichurin, D. Viehland, Magnetoelectricity in Composites (Pan Stanford, Singapore, 2012).

    Google Scholar 

  6. C. Nan, M. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).

    Google Scholar 

  7. J. Gao, L. Shen, Y. Wang, D. Gray, J.F. Li, D. Viehland, J. Appl. Phys. 109, 7 (2011).

    Google Scholar 

  8. S. Dong, J. Cheng, J.F. Li, D. Viehland, Appl. Phys. Lett. 83, 4812 (2003).

    Google Scholar 

  9. C. Leung, X. Zhuang, J. Xu, G. Srinivasan, J. Li, D. Viehland, Appl. Phys. Lett. 109, 20 (2016).

    Google Scholar 

  10. J. Gao, D. Hasanyan, Y. Shen, Y. Wang, J.F. Li, D. Viehland, J. Appl. Phys. 112, 10 (2012).

    Google Scholar 

  11. Y. Wang, J.F. Li, D. Viehland, Mater. Today 17, 269 (2014).

    Google Scholar 

  12. S. Dong, J. Zhai, Z. Xing, J.F. Li, D. Viehland, Appl. Phys. Lett. 86, 10 (2005).

    Google Scholar 

  13. F. Wang, L. Luo, D. Zhou, X. Zhao, H. Luo, Appl. Phys. Lett. 90 (21), 212903 (2007).

    Google Scholar 

  14. E. Yarar, V. Hrkac, C. Zamponi, A. Piorra, L. Kienle, E. Quandt, AIP Adv. 6, 075115 (2016).

    Google Scholar 

  15. S. Fichtner, T. Reimer, S. Chemnitz, F. Lofink, B. Wagner, APL Mater. 3, 116102 (2015).

    Google Scholar 

  16. A. Piorra, R. Jahns, I. Teliban, J.L. Gugat, M. Gerken, R. Knöchel, E. Quandt, Appl. Phys. Lett. 103, 032902 (2013).

    Google Scholar 

  17. E. Quandt, A. Ludwig, J. Appl. Phys. 85, 6232 (1999).

    Google Scholar 

  18. J. Lou, R.E. Insignares, Z. Cai, K.S. Ziemer, M. Liu, N.X. Sun, Appl. Phys. Lett. 91, 182504 (2007).

    Google Scholar 

  19. E. Lage, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns, R. Knöchel, E. Quandt, D. Meyners, Nat. Mater. 11, 523 (2012).

    Google Scholar 

  20. V. Röbisch, E. Yarar, N.O. Urs, I. Teliban, R. Knöchel, J. McCord, E. Quandt, D. Meyners, J. Appl. Phys. 117, 17B513 (2015).

  21. S. Ren, M. Wuttig, Appl. Phys. Lett. 91, 083501 (2007).

    Google Scholar 

  22. S. Ren, R.M. Briber, M. Wuttig, Appl. Phys. Lett. 93, 173507 (2008).

    Google Scholar 

  23. J.W. Cahn, Acta Metall. 9, 795 (1961).

    Google Scholar 

  24. J.W. Cahn, J. Appl. Phys. 34, 3581 (1963).

    Google Scholar 

  25. C. Parka, B.J. Yoon, E.L. Thomas, Polymer 44, 6725 (2003).

    Google Scholar 

  26. R. Shenqiang, R. Briber, M. Wuttig, Appl. Phys. Lett. 94, 113507 (2009).

    Google Scholar 

  27. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003).

    Google Scholar 

  28. G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Phys. Rev. B Condens. Matter 64, 214408 (2001).

    Google Scholar 

  29. R. Ramesh, Nat. Nanotechnol. 3, 7 (2008).

    Google Scholar 

  30. Y. Wang, D. Gray, D. Berry, J. Gao, M. Li, J.F. Li, D. Viehland, Adv. Mater. 23, 35 (2011).

    Google Scholar 

  31. X. Zhuang, C. Sing, C. Dolabdjian, P. Finkel, J.F. Li, D. Viehland, IEEE Sens. J. 14, 150 (2014).

    Google Scholar 

  32. Y. Shen, K.L. McLaughlin, J.Q. Gao, M.H. Li, J.F. Li, D. Viehland, Mater. Lett. 91, 307 (2013).

    Google Scholar 

  33. S. Marauska, R. Jahns, C. Kirchhof, M. Claus, E. Quandt, R. Knöchel, B. Wagner, Sens. Actuators A 189, 321 (2013).

    Google Scholar 

  34. C. Kirchhof, M. Krantz, J. Teliban, R. Jahns, S. Marauska, B. Wagner, R. Knöchel, M. Gerken, D. Meyners, E. Quandt, Appl. Phys. Lett. 102, 232905 (2013).

    Google Scholar 

  35. R. Jahns, H. Greve, E. Woltermann, E. Quandt, R. Knöchel, IEEE Trans. Instrum. Meas. 60, 2995 (2011).

    Google Scholar 

  36. P. Durdaut, S. Salzer, J. Reermann, V. Roebisch, P. Hayes, A. Piorra, D. Meyners, E. Quandt, G. Schmidt, R. Knoechel, M. Hoeft, IEEE Sens. J. 17, 2338 (2017).

    Google Scholar 

  37. E. Yarar, S. Salzer, V. Hrkac, A. Piorra, M. Höft, R. Knöchel, L. Kienle, E. Quandt, Appl. Phys. Lett. 109, 022901 (2016).

    Google Scholar 

  38. R. Jahns, S. Zabel, S. Marauska, B. Gojdka, B. Wagner, R. Knöchel, R. Adelung, F. Faupel, Appl. Phys. Lett. 105, 052414 (2014).

    Google Scholar 

  39. P. Hayes, S. Salzer, J. Reermann, E. Yarar, V. Röbisch, A. Piorra, D. Meyners, M. Höft, R. Knöchel, G. Schmidt, E. Quandt, Appl. Phys. Lett. 108, 182902 (2016).

    Google Scholar 

  40. B.S. Berry, W.C. Pritchet, Phys. Rev. Lett. 34, 1022 (1975).

    Google Scholar 

  41. T.X. Nan, Y. Hui, M. Rinaldi, N.X. Sun, Sci. Rep. 3, 1985 (2013).

    Google Scholar 

  42. S. Zabel, J. Reermann, S. Fichtner, C. Kirchhof, E. Quandt, B. Wagner, G. Schmidt, F. Faupel, Appl. Phys. Lett. 108, 222401 (2016).

    Google Scholar 

  43. A. Kittmann, P. Durdaut, S. Zabel, J. Reermann, J. Schmalz, B. Spetzler, D. Meyners, N.X. Sun, J. McCord, M. Gerken, G. Schmidt, M. Höft, R. Knöchel, F. Faupel, E. Quandt, Sci. Rep. 8, 278 (2018).

    Google Scholar 

  44. M. Schmelz, R. Stolz, V. Zakosarenko, T. Schönau, S. Anders, L. Fritzsch, M. Mück, M. Meyer, H.-G. Meyer, Physica C Supercond. 482, 27 (2012).

    Google Scholar 

  45. T.H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, S. Knappe, Biomed. Opt. Express 3, 981 (2012).

    Google Scholar 

  46. E. Portalier, B. Dufay, S. Saez, C. Dolabdjian, IEEE Trans. Magn. 51, 4002104 (2015).

    Google Scholar 

Download references

Acknowledgments

D.V. acknowledges support from the Office of Naval Research (N000141512457). E.Q. and J.M.C. acknowledge the support of the Collaborative Research Center CRC 1261 “Magneto-electric Sensors: From Composite Materials to Biomagnetic Diagnostics,” funded by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dwight Viehland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viehland, D., Wuttig, M., McCord, J. et al. Magnetoelectric magnetic field sensors. MRS Bulletin 43, 834–840 (2018). https://doi.org/10.1557/mrs.2018.261

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.261

Navigation