Skip to main content
Log in

Modeling and predicting responses of magnetoelectric materials

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Magnetoelectric (ME) materials exhibit cross-coupling effects between magnetization and polarization, by which one can manipulate the magnetization (or polarization) with an electric (or magnetic) field. To better understand the responses of ME materials and the coupling mechanisms involved, various simulation methods at different scales, ranging from electronic and atomic scale to the mesoscale, have been developed in the past decades. In this article, we summarize recent progress in modeling and predicting responses of ME materials, and present our perspectives on key issues that require further study, including multiscale simulation methods and approaches dealing with dynamic processes. The simulation methods have the potential to illuminate the dynamic processes in ME materials and device response to external fields and eventually be used for guidance for the data-driven computational design of new ME materials and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. S. Manipatruni, D.E. Nikonov, I.A. Young, Nat. Phys. 14, 5 (2018).

    Google Scholar 

  2. C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).

    Google Scholar 

  3. M. Zhu, T. Nan, B. Peng, Y. Zhang, Z. Zhou, X. Yang, W. Ren, N.X. Sun, M. Liu, IEEE Trans. Magn. 53, 1 (2017).

    Google Scholar 

  4. S. Dong, J.M. Liu, S.W. Cheong, Z. Ren, Adv. Phys. 64, 519 (2015).

    Google Scholar 

  5. J.M. Rondinelli, N.A. Spaldin, Adv. Mater. 23, 3363 (2011).

    Google Scholar 

  6. E.Y. Tsymbal, H. Kohlstedt, Science 313, 181 (2006).

    Google Scholar 

  7. J.M. Hu, C.G. Duan, C.W. Nan, L.Q. Chen, NPJ Comput. Mater. 3, 18 (2017).

    Google Scholar 

  8. J.M. Hu, L.Q. Chen, C.W. Nan, Adv. Mater. 28, 15 (2016).

    Google Scholar 

  9. J.M. Hu, Z. Li, L.Q. Chen, C.W. Nan, Nat. Commun. 2, 553 (2011).

    Google Scholar 

  10. J.M. Hu, T. Yang, J. Wang, H. Huang, J. Zhang, L.Q. Chen, C.W. Nan, Nano Lett. 15, 616 (2015).

    Google Scholar 

  11. J.J. Wang, J.M. Hu, R.C. Peng, Y. Gao, Y. Shen, L.Q. Chen, C.W. Nan, Sci. Rep. 5, 10459 (2015).

    Google Scholar 

  12. R.C. Peng, J.M. Hu, L.Q. Chen, C.W. Nan, NPG Asia Mater. 9, e404 (2017).

  13. C. Miehe, G. Ethiraj, Comput. Methods Appl. Mech. Eng. 245, 331 (2012).

    Google Scholar 

  14. M. Seymour, F. Sanches, K. Elder, N. Provatas, Phys. Rev. B Condens. Matter 92, 184109 (2015).

    Google Scholar 

  15. E. Alster, D. Montiel, K. Thornton, P.W. Voorhees, Phys. Rev. Mater. 1, 060801 (2017).

    Google Scholar 

  16. E. Asadi, M. Asle Zaeem, M.I. Baskes, JOM 66, 429 (2014).

    Google Scholar 

  17. S. Prosandeev, I.A. Kornev, L. Bellaiche, Phys. Rev. B Condens. Matter 83, 020102(R) (2011).

  18. W. Ren, L. Bellaiche, Phys. Rev. B Condens. Matter 82, 113403 (2010).

    Google Scholar 

  19. D. Wang, J. Weerasinghe, L. Bellaiche, Phys. Rev. Lett. 109, 067203 (2012).

    Google Scholar 

  20. I.D. Brown, Chem. Rev. 109, 6858 (2009).

    Google Scholar 

  21. M. Graf, M. Sepliarsky, M. Stachiotti, S. Tinte, Ferroelectrics 461, 61 (2014).

    Google Scholar 

  22. S. Liu, I. Grinberg, A.M. Rappe, J. Phys. Condens. Matter 25, 102202 (2013).

    Google Scholar 

  23. Y. Qi, S. Liu, I. Grinberg, A.M. Rappe, Phys. Rev. B Condens. Matter 94, 134308 (2016).

    Google Scholar 

  24. R. Xu, S. Liu, I. Grinberg, J. Karthik, A.R. Damodaran, A.M. Rappe, L.W. Martin, Nat. Mater. 14, 79 (2015).

    Google Scholar 

  25. H. Takenaka, I. Grinberg, S. Liu, A.M. Rappe, Nature 546, 391 (2017).

    Google Scholar 

  26. M. Graf, M. Sepliarsky, M.G. Stachiotti, Phys. Rev. B Condens. Matter 94, 054101 (2016).

    Google Scholar 

  27. J. Hlinka, M. Pasciak, S. Korbel, P. Marton, Phys. Rev. Lett. 119, 057604 (2017).

    Google Scholar 

  28. E.K.H. Salje, X. Wang, X. Ding, J.F. Scott, Adv. Funct. Mater. 27, 1700367 (2017).

    Google Scholar 

  29. J. Tranchida, S.J. Plimpton, P. Thibaudeau, A.P. Thompson, J. Comput. Phys. 372, 406 (2018).

    Google Scholar 

  30. P.W. Ma, S.L. Dudarev, C.H. Woo, Comput. Phys. Commun. 207, 350 (2016).

    Google Scholar 

  31. J. Hellsvik, D. Thonig, K. Modin, D. Iuşan, A. Bergman, O. Eriksson, L. Bergqvist, A. Delin, Condens. Matter Mater. Sci. (2018), https://arxiv.org/abs/1804.03119.

  32. D. Perera, M. Eisenbach, D.M. Nicholson, G.M. Stocks, D.P. Landau, Phys. Rev. B Condens. Matter 93, 060402(R) (2016).

  33. D. Beaujouan, P. Thibaudeau, C. Barreteau, Phys. Rev. B Condens. Matter 86, 174409 (2012).

    Google Scholar 

  34. D. Perera, D.M. Nicholson, M. Eisenbach, G.M. Stocks, D.P. Landau, Phys. Rev. B Condens. Matter 95, 014431 (2017).

    Google Scholar 

  35. E. Bousquet, N.A. Spaldin, K.T. Delaney, Phys. Rev. Lett. 106, 107202 (2011).

    Google Scholar 

  36. J. Íñiguez, Phys. Rev. Lett. 101, 117201 (2008).

    Google Scholar 

  37. Y. Du, H.C. Ding, L. Sheng, S.Y. Savrasov, X. Wan, C.G. Duan, J. Phys. Condens. Matter 26, 025503 (2014).

    Google Scholar 

  38. J. Liu, D. Vanderbilt, Phys. Rev. B Condens. Matter 92, 245138 (2015).

    Google Scholar 

  39. J.C. Wojdel, J. Íñiguez, Phys. Rev. Lett. 105, 037208 (2010).

    Google Scholar 

  40. P. Chen, M.N. Grisolia, H.J. Zhao, O.E. González-Vázquez, L. Bellaiche, M. Bibes, B.-G. Liu, J. Íñiguez, Phys. Rev. B Condens. Matter 97, 024113 (2018).

    Google Scholar 

  41. H.J. Xiang, M. Guennou, J. Íñiguez, J. Kreisel, L. Bellaiche, Phys. Rev. B Condens. Matter 96, 054102 (2017).

    Google Scholar 

  42. J. Varignon, N.C. Bristowe, P. Ghosez, Phys. Rev. Lett. 116, 057602 (2016).

    Google Scholar 

  43. H. Jiang, Int. J. Quantum Chem. 115, 722 (2015).

    Google Scholar 

  44. R. Nourafkan, G. Kotliar, A.M.S. Tremblay, Phys. Rev. B Condens. Matter 90, 220405(R) (2014).

  45. D. Puggioni, G. Giovannetti, M. Capone, J.M. Rondinelli, Phys. Rev. Lett. 115, 087202 (2015).

    Google Scholar 

  46. X. Wang, Y. Chai, L. Zhou, H. Cao, C.D. Cruz, J. Yang, J. Dai, Y. Yin, Z. Yuan, S. Zhang, R. Yu, M. Azuma, Y. Shimakawa, H. Zhang, S. Dong, Y. Sun, C. Jin, Y. Long, Phys. Rev. Lett. 115, 087601 (2015).

    Google Scholar 

  47. J. Young, J.M. Rondinelli, Chem. Mater. 25, 4545 (2013).

    Google Scholar 

  48. N.C. Bristowe, J. Varignon, D. Fontaine, E. Bousquet, P. Ghosez, Nat. Commun. 6, 6677 (2015).

    Google Scholar 

  49. H.J. Zhao, L. Bellaiche, X.M. Chen, J. Íñiguez, Nat. Commun. 8, 14025 (2017).

    Google Scholar 

  50. Y. Weng, L. Lin, E. Dagotto, S. Dong, Phys. Rev. Lett. 117, 037601 (2016).

    Google Scholar 

  51. T. Shimada, T. Xu, Y. Araki, J. Wang, T. Kitamura, Nano Lett. 17, 2674 (2017).

    Google Scholar 

  52. P. García-Fernández, J.C. Wojdeł, J. Íñiguez, J. Junquera, Phys. Rev. B Condens. Matter 93, 195137 (2016).

    Google Scholar 

  53. C. Escorihuela-Sayalero, J.C. Wojdeł, J. Íñiguez, Phys. Rev. B Condens. Matter 95, 094115 (2017).

    Google Scholar 

  54. V. Botu, R. Batra, J. Chapman, R. Ramprasad, J. Phys. Chem. C 121, 511 (2016).

    Google Scholar 

  55. L. Zhang, J. Han, H. Wang, R. Car, W. E, Phys. Rev. Lett. 120, 143001 (2018).

    Google Scholar 

  56. L. Li, Y. Yang, D. Zhang, Z.-G. Ye, S. Jesse, S.V. Kalinin, R.K. Vasudevan, Sci. Adv. 4, eaap8672 (2018).

  57. Q. Li, C.T. Nelson, S.L. Hsu, A.R. Damodaran, L.L. Li, A.K. Yadav, M. McCarter, L.W. Martin, R. Ramesh, S.V. Kalinin, Nat. Commun. 8, 1468 (2017).

    Google Scholar 

  58. D. Xue, P.V. Balachandran, R. Yuan, T. Hu, X. Qian, E.R. Dougherty, T. Lookman, Proc. Natl. Acad. Sci. U.S.A. 113, 13301 (2016).

    Google Scholar 

  59. P.V. Balachandran, J. Young, T. Lookman, J.M. Rondinelli, Nat. Commun. 8, 14282 (2017).

    Google Scholar 

  60. P.V. Balachandran, A.A. Emery, J.E. Gubernatis, T. Lookman, C. Wolverton, A. Zunger, Phys. Rev. Mater. 2, 043802 (2018).

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge our colleagues and collaborators for sharing their insights and contributions, notably, J.M. Hu and L.Q. Chen. This work was supported by National Science Foundation of China (Grant No. 51790494).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Nan, CW. Modeling and predicting responses of magnetoelectric materials. MRS Bulletin 43, 829–833 (2018). https://doi.org/10.1557/mrs.2018.259

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.259

Navigation