Skip to main content
Log in

Integrated magnetoelectric devices: Filters, pico-Tesla magnetometers, and ultracompact acoustic antennas

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Strong strain-mediated magnetoelectric (ME) coupling in magnetic/ferroelectric heterostructures has great potential for different high-frequency multiferroic devices. In this article, we present the most recent progress in integrated multiferroic devices. Integrated magnetic tunable inductors with a wide operation frequency range, integrated nonreciprocal bandpass filters with dual magnetic and electric-field tunability based on magnetostatics surface waves, and novel radio-frequency nanomechanical ME resonators with pico-Tesla sensitivity for direct current magnetic fields are presented. Finally, a new antenna miniaturization mechanism, acoustically actuated nanomechanical ME antennas, which can successfully miniaturize the size by 1–2 orders, is introduced. With the advantages of high magnetic field sensitivity, highest antenna gain among all nanoscale antennas at similar frequency, integrated capability with complementary metal oxide semiconductor technology, and ground-plane immunity from metallic surfaces and the human body, ME antennas have a bright future for biomedical applications, wearable antennas, and the Internet of Things due to their unique and particular properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. G. Srinivasan, Annu. Rev. Mater. Res. 40, 153 (2010).

    Google Scholar 

  2. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442 (7104), 759 (2006).

    Google Scholar 

  3. M. Fiebig, J. Phys. D Appl. Phys. 38 (8), R123 (2005).

    Google Scholar 

  4. R. Ramesh, N.A. Spaldin, Nat. Mater. 6 (1), 21 (2007).

    Google Scholar 

  5. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103 (3), 031101 (2008).

    Google Scholar 

  6. C. Vaz, J. Hoffman, C. Ahn, R. Ramesh, Adv. Mater. 22 (26–27), 2900 (2010).

  7. L.W. Martin, Y.H. Chu, R. Ramesh, Mater. Sci. Eng. 68 (4), 89 (2010).

    Google Scholar 

  8. J. Ma, J. Hu, Z. Li, C.W. Nan, Adv. Mater. 23 (9), 1062 (2011).

    Google Scholar 

  9. S. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett. 83, 2265 (2003).

    Google Scholar 

  10. S. Dong, J. Zhai, J.F. Li, D. Viehland, S. Priya, Appl. Phys. Lett. 93, 103511 (2008).

    Google Scholar 

  11. M. Liu, S. Li, O. Obi, J. Lou, S. Rand, N.X. Sun, Appl. Phys. Lett. 98, 222509 (2011).

    Google Scholar 

  12. J.M. Hu, Z. Li, L.Q. Chen, C.W. Nan, Nat. Commun. 2, 553 (2011).

    Google Scholar 

  13. T.X. Nan, Z.Y. Zhou, J. Lou, M. Liu, X. Yang, Y. Gao, S. Rand, N.X. Sun, Appl. Phys. Lett. 100, 132409 (2012).

    Google Scholar 

  14. Y. Gao, S.Z. Zardareh, X. Yang, T. Nan, Z.Y. Zhou, M. Onabajo, M. Liu, A. Aronow, K. Mahalingam, B.M. Howe, G.J. Brown, N.X. Sun, IEEE Trans. Electron Devices 61 (5), 1470 (2014).

    Google Scholar 

  15. Y. Gao, S. Zare, M. Onabajo, M. Li, Z. Zhou, T. Nan, X. Yang, M. Liu, K. Mahalingam, B.M. Howe, J.G. Jones, N.X. Sun, “Power-Efficient Voltage Tunable RF Integrated Magnetoelectric Inductors with FeGaB/Al2O3 Multilayer Films,” presented at the IEEE MTTS International Microwave Symposium, Tampa, FL, June 1–6, 2014, pp. 1–4.

  16. H. Lin, T. Nan, Z. Qian, Y. Gao, Y. Hui, X. Wang, R. Guo, A. Belkessam, W. Shi, M. Rinaldi, N.X. Sun, “Tunable RF Band-Pass Filters Based on NEMS Magnetoelectric Resonators,” presented at the IEEE MTTS International Microwave Symposium, San Francisco, May 22–27, 2016, pp. 1–4.

  17. S. Dong, J. Zhai, J. Li, D. Viehland, Appl. Phys. Lett. 88, 082907 (2006).

    Google Scholar 

  18. T. Nan, Y. Hui, M. Rinaldi, N.X. Sun, Sci. Rep. 3, 1985 (2013).

    Google Scholar 

  19. Z. Yao, Y.E. Wang, “Bulk Acoustic Wave Mediated Multiferroic Antennas near Ferromagnetic Resonance,” presented at the APS/URSI, Vancouver, BC, Canada, July 19–24, 2015.

  20. Z. Yao, Y.E. Wang, S. Keller, G.P. Carman, IEEE Trans. Antennas Propag. 63 (8), 3335 (2015).

    Google Scholar 

  21. Z. Yao, Y.E. Wang, “3D ADI-FDTD Modeling of Platform Reduction with Thin Film Ferromagnetic Material,” presented at the APS/URSI, Fajardo, Puerto Rico, June 26–July 1, 2016.

  22. W.G.Q. Xu, Y.E. Wang, “Two Dimensional (2D) Complex Permeability Characterization of Thin Film Ferromagnetic Material,” presented at the IEEE CAMA, Syracuse, NY, October 23–27, 2016.

  23. J.P. Domann, G.P. Carman, J. Appl. Phys. 121 (4), 044905 (2017).

    Google Scholar 

  24. T. Nan, H. Lin, Y. Gao, A. Matyushov, G. Yu, H. Chen, N. Sun, S. Wei, Z. Wang, M. Li, X. Wang. A. Belkessam, R. Guo, B. Chen, J. Zhou, Z. Qian, Y. Hui, M. Rinaldi, M.E. McConney, B.M. Howe, Z. Hu, J.G. Jones, G.J. Brown, N.X. Sun, Nat. Commun. 8 (1), 296 (2017).

    Google Scholar 

Download references

Acknowledgments

This work was supported by DARPA through Award D15PC00009, the W.M. Keck Foundation, the NSF TANMS ERC Award 1160504, and in part by the AFRL through Contract FA8650–14-C-5706. Microfabrication was performed in the George J. Kostas Nanoscale Technology and Manufacturing Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwaider Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Page, M.R., McConney, M. et al. Integrated magnetoelectric devices: Filters, pico-Tesla magnetometers, and ultracompact acoustic antennas. MRS Bulletin 43, 841–847 (2018). https://doi.org/10.1557/mrs.2018.257

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.257

Navigation