Skip to main content

Advertisement

Log in

In situ and operando probing of solid–solid interfaces in electrochemical devices

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Solid-state electrolytes can offer improved lithium-ion battery safety while potentially increasing the energy density by enabling alkali metal anodes. There have been significant research efforts to improve the ionic conductivity of solid-state electrolytes and the electrochemical performance of all-solid-state batteries; however, the root causes of their poor performance—interfacial reaction and subsequent impedance growth—are poorly understood. This is due to the dearth of effective characterization techniques for probing these buried interfaces. In situ and operando methodologies are currently under development for solid-state interfaces, and they offer the potential to describe the dynamic interfacial processes that serve as performance bottlenecks. This article highlights state-of-the-art solid–solid interface probing methodologies, describes practical limitations, and describes a future for dynamic interfacial characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Dudney, W.C. West, J. Nanda, Eds., Handbook of Solid State Batteries, 2nd ed. (World Scientific, Singapore, 2016).

    Google Scholar 

  2. K. Kerman, A. Luntz, V. Viswanathan, Y.-M. Chiang, Z. Chen, J. Electrochem. Soc. 164, A1731 (2017).

  3. C.W. Ban, G.M. Choi, Solid State Ionics 140, 285 (2001).

    Google Scholar 

  4. A. Varzi, R. Raccichini, S. Passerini, B. Scrosati, J. Mater. Chem. A 4, 17251 (2016).

    Google Scholar 

  5. J. Maier, Ber. Bunsenges. Phys. Chem. 93, 1468 (1989).

    Google Scholar 

  6. W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. Ceder, Chem. Mater. 28, 266 (2016).

    Google Scholar 

  7. Y. Zhu, X. He, Y. Mo, ACS Appl. Mater. Interfaces 7, 23685 (2015).

    Google Scholar 

  8. F. Lin, Y. Liu, X. Yu, L. Cheng, A. Singer, O.G. Shpyrko, H.L. Xin, N. Tamura, Chem. Rev. 117, 13123 (2017).

    Google Scholar 

  9. B.L. Mehdi, M. Gu, L.R. Parent, W. Xu, E.N. Nasybulin, X. Chen, R.R. Unocic, P. Xu, D.A. Welch, P. Abellan, J.G. Zhang, J. Liu, C.M. Wang, I. Arslan, J. Evans, N.D. Browning, Microsc. Microanal. 20, 484 (2014).

    Google Scholar 

  10. M.L. Taheri, E.A. Stach, I. Arslan, P.A. Crozier, B.C. Kabius, T. LaGrange, A.M. Minor, S. Takeda, M. Tanase, J.B. Wagner, R. Sharma, Ultramicroscopy 170, 86 (2016).

    Google Scholar 

  11. Y. Yuan, K. Amine, J. Lu, R. Shahbazian-Yassar, Nat. Commun. 8, 1 (2017).

    Google Scholar 

  12. A.M. Tripathi, W.-N. Su, B.J. Hwang, Chem. Soc. Rev. 47, 736 (2018).

    Google Scholar 

  13. Y. Iriyama, T. Kako, C. Yada, T. Abe, Z. Ogumi, Solid State Ionics 176, 2371 (2005).

    Google Scholar 

  14. Y. Amiki, F. Sagane, K. Yamamoto, T. Hirayama, M. Sudoh, M. Motoyama, Y. Iriyama, J. Power Sources 241, 583 (2013).

    Google Scholar 

  15. T. Kato, T. Hamanaka, K. Yamamoto, T. Hirayama, F. Sagane, M. Motoyama, Y. Iriyama, J. Power Sources 260, 292 (2014).

    Google Scholar 

  16. J. Maier, Prog. Solid State Chem. 23, 171 (1995).

    Google Scholar 

  17. N. Sata, K. Eberman, K. Eberl, J. Maier, Nature 408, 946 (2000).

    Google Scholar 

  18. J. Haruyama, K. Sodeyama, L. Han, K. Takada, Y. Tateyama, Chem. Mater. 26, 4248 (2014).

    Google Scholar 

  19. F.S. Gittleson, F. El Gabaly, Nano Lett. 17, 6974 (2017).

    Google Scholar 

  20. Y. Zhu, X. He, Y. Mo, J. Mater. Chem. A 4, 1 (2016).

    Google Scholar 

  21. L. Miara, A. Windmüller, C.L. Tsai, W.D. Richards, Q. Ma, S. Uhlenbruck, O. Guillon, G. Ceder, ACS Appl. Mater. Interfaces 8, 26842 (2016).

    Google Scholar 

  22. Z. Wang, J.Z. Lee, H.L. Xin, L. Han, N. Grillon, D. Guy-Bouyssou, E. Bouyssou, M. Proust, Y.S. Meng, J. Power Sources 324, 342 (2016).

    Google Scholar 

  23. E.A. Wu, C.S. Kompella, Z. Zhu, J.Z. Lee, S.C. Lee, I.H. Chu, H. Nguyen, S.P. Ong, A. Banerjee, Y.S. Meng, ACS Appl. Mater. Interfaces 10, 10076 (2018).

    Google Scholar 

  24. J.Z. Lee, T.A. Wynn, M.A. Schroeder, J. Alvarado, X. Wang, K. Xu, Y.S. Meng, “Cryogenic focused ion beam characterization of lithium metal anodes for Li-ion batteries,” (forthcoming).

  25. X. Wang, M. Zhang, J. Alvarado, S. Wang, M. Sina, B. Lu, J. Bouwer, W. Xu, J. Xiao, J.G. Zhang, J. Liu, Y.S. Meng, Nano Lett. 17, 7606 (2017).

    Google Scholar 

  26. Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C.L. Wu, L.M. Joubert, R. Chin, A.L. Koh, Y. Yu, J. Perrino, B. Butz, S. Chu, Y. Cui, Science 358, 506 (2017).

    Google Scholar 

  27. A. Schwöbel, R. Hausbrand, W. Jaegermann, Solid State Ionics 273, 51 (2015).

    Google Scholar 

  28. S. Wenzel, T. Leichtweiss, D. Krüger, J. Sann, J. Janek, Solid State Ionics 278, 98 (2015).

    Google Scholar 

  29. S. Wenzel, S. Randau, T. Leichtweiß, D.A. Weber, J. Sann, W.G. Zeier, J. Janek, Chem. Mater. 28, 2400 (2016).

    Google Scholar 

  30. C. Ma, Y. Cheng, K. Yin, J. Luo, A. Sharafi, J. Sakamoto, J. Li, K.L. More, N.J. Dudney, M. Chi, Nano Lett. 16, 7030 (2016).

    Google Scholar 

  31. K. Yamamoto, Y. Iriyama, T. Asaka, T. Hirayama, H. Fujita, K. Nonaka, K. Miyahara, Y. Sugita, Z. Ogumi, Electrochem. Commun. 20, 113 (2012).

    Google Scholar 

  32. K. Yamamoto, Y. Iriyama, T. Asaka, T. Hirayama, H. Fujita, C.A.J. Fisher, K. Nonaka, Y. Sugita, Z. Ogumi, Angew. Chem. Int. Ed. Engl. 49, 4414 (2010).

    Google Scholar 

  33. Y. Aizawa, K. Yamamoto, T. Sato, H. Murata, R. Yoshida, C.A.J. Fisher, T. Kato, Y. Iriyama, T. Hirayama, Ultramicroscopy, 178, 20 (2017).

    Google Scholar 

  34. D. Santhanagopalan, D. Qian, T. McGilvray, Z. Wang, F. Wang, F. Camino, J. Graetz, N. Dudney, Y.S. Meng, J. Phys. Chem. Lett. 5, 298 (2014).

    Google Scholar 

  35. Z. Wang, D. Santhanagopalan, W. Zhang, F. Wang, H.L. Xin, K. He, J. Li, N. Dudney, Y.S. Meng, Nano Lett. 16, 3760 (2016).

    Google Scholar 

  36. D. Ruzmetov, V.P. Oleshko, P.M. Haney, H.J. Lezec, K. Karki, K.H. Baloch, A.K. Agrawal, A.V. Davydov, S. Krylyuk, Y. Liu, J. Huang, M. Tanase, J. Cumings, A.A. Talin, Nano Lett. 12, 505 (2012).

    Google Scholar 

  37. H. Masuda, N. Ishida, Y. Ogata, D. Ito, D. Fujita, Nanoscale 9, 893 (2017).

    Google Scholar 

  38. P.-H. Chien, X. Feng, M. Tang, J.T. Rosenberg, S. O’Neill, J. Zheng, S.C. Grant, Y.-Y. Hu, J. Phys. Chem. Lett. 9, 1990 (2018).

    Google Scholar 

  39. D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Springer, New York, 2009), vols. 1–4.

  40. T. Radetic, A. Gautam, C. Ophus, C. Czarnik, U. Dahmen, Microsc. Microanal. 20, 1594 (2014).

    Google Scholar 

  41. A.-C. Milazzo, A. Cheng, A. Moeller, D. Lyumkis, E. Jacovetty, J. Polukas, M.H. Ellisman, N.-H. Xuong, B. Carragher, C.S. Potter, J. Struct. Biol. 173, 404 (2011).

    Google Scholar 

  42. Y. Gong, J. Zhang, L. Jiang, J.A. Shi, Q. Zhang, Z. Yang, D. Zou, J. Wang, X. Yu, R. Xiao, Y.S. Hu, L. Gu, H. Li, L. Chen, J. Am. Chem. Soc. 139, 4274 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Wynn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wynn, T.A., Lee, J.Z., Banerjee, A. et al. In situ and operando probing of solid–solid interfaces in electrochemical devices. MRS Bulletin 43, 768–774 (2018). https://doi.org/10.1557/mrs.2018.235

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.235

Navigation