Skip to main content

Advertisement

Log in

Architectural design and fabrication approaches for solid-state batteries

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Solid-state batteries are promising candidates for energy storage due to their potential advantages in safety, working temperature range, and energy density compared to traditional liquid-electrolyte-based batteries. Rational battery architecture design and a scalable fabrication approach are critical to realize solid-state batteries. In this article, we present the architecture, fabrication procedure, and related challenges of sulfide and oxide electrolyte-based solid-state batteries. Approaches toward intimate solid−solid contact, thin solid-electrolyte fabrication, and scale-up production are discussed. Finally, we discuss the future research directions of solid-state batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Janek, W.G. Zeier, Nat. Energy 1, 16141 (2016).

    Google Scholar 

  2. Y.V. Mikhaylik, J.R. Akridge, J. Electrochem. Soc. 151, A1969 (2004).

  3. A.C. Luntz, J. Voss, K. Reuter, J. Phys. Chem. Lett. 6, 4599 (2015).

    Google Scholar 

  4. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Nat. Energy 1, 16030 (2016).

    Google Scholar 

  5. Y. Kato, S. Shiotani, K. Morita, K. Suzuki, M. Hirayama, R. Kanno, J. Phys. Chem. Lett. 9, 607 (2018).

    Google Scholar 

  6. J. Schnell, T. Günther, T. Knoche, C. Vieider, L. Köhler, A. Just, M. Keller, S. Passerini, G. Reinhart, J. Power Sources 382, 160 (2018).

    Google Scholar 

  7. J.C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S.F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-Horn, Chem. Rev. 116, 140 (2016).

    Google Scholar 

  8. V. Thangadurai, S. Narayanan, D. Pinzaru, Chem. Soc. Rev. 43, 4714 (2014).

    Google Scholar 

  9. F. Han, Y. Zhu, X. He, Y. Mo, C. Wang, Adv. Energy Mater. 6, 1501590 (2016).

    Google Scholar 

  10. R. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W. Zhang, J.O. Binder, P. Hartmann, W.G. Zeier, J. Janek, Chem. Mater. 29, 5574 (2017).

    Google Scholar 

  11. F. Han, T. Gao, Y. Zhu, K.J. Gaskell, C. Wang, Adv. Mater. 27, 3473 (2015).

    Google Scholar 

  12. Y. Ren, Y. Shen, Y. Lin, C.-W. Nan, Electrochem. Commun. 57, 27 (2015).

    Google Scholar 

  13. E.J. Cheng, A. Sharafi, J. Sakamoto, Electrochim. Acta 223, 85 (2017).

    Google Scholar 

  14. F. Han, J. Yue, X. Zhu, C. Wang, Adv. Energy Mater. 8, 1703644 (2018).

    Google Scholar 

  15. K. Kerman, A. Luntz, V. Viswanathan, Y.-M. Chiang, Z. Chen, J. Electrochem. Soc. 164, A1731 (2017).

  16. T. Knoche, V. Zinth, M. Schulz, J. Schnell, R. Gilles, G. Reinhart, J. Power Sources 331, 267 (2016).

    Google Scholar 

  17. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nat. Mater. 10, 682 (2011).

    Google Scholar 

  18. F. Han, J. Yue, C. Chen, N. Zhao, X. Fan, Z. Ma, T. Gao, F. Wang, X. Guo, C. Wang, Joule 2, 497 (2018).

    Google Scholar 

  19. W. Zhang, T. Leichtweiß, S.P. Culver, R. Koerver, D. Das, D.A. Weber, W.G. Zeier, J. Janek, ACS Appl. Mater. Interfaces 9, 35888 (2017).

    Google Scholar 

  20. C. Monroe, J. Newman, J. Electrochem. Soc. 152, A396 (2005).

  21. B.J. Neudecker, N.J. Dudney, J.B. Bates, J. Electrochem. Soc. 147, 517 (2000).

    Google Scholar 

  22. L. Porz, T. Swamy, B.W. Sheldon, D. Rettenwander, T. Frömling, H.L. Thaman, S. Berendts, R. Uecker, W.C. Carter, Y.-M. Chiang, Adv. Energy Mater. 7, 1701003 (2017).

    Google Scholar 

  23. A. Sakuda, A. Hayashi, M. Tatsumisago, Sci. Rep. 3, 2261 (2013).

    Google Scholar 

  24. S. Yu, R.D. Schmidt, R. Garcia-Mendez, E. Herbert, N.J. Dudney, J.B. Wolfenstine, J. Sakamoto, D.J. Siegel, Chem. Mater. 28, 197 (2016).

    Google Scholar 

  25. M. Nagao, A. Hayashi, M. Tatsumisago, Electrochim. Acta 56, 6055 (2011).

    Google Scholar 

  26. M. Nagao, A. Hayashi, M. Tatsumisago, J. Mater. Chem. 22, 10015 (2012).

    Google Scholar 

  27. H.U. Choi, J.S. Jin, J.-Y. Park, H.-T. Lim, J. Alloys Compd. 723, 787 (2017).

    Google Scholar 

  28. Z. Liu, W. Fu, E.A. Payzant, X. Yu, Z. Wu, N.J. Dudney, J. Kiggans, K. Hong, A.J. Rondinone, C. Liang, J. Am. Chem. Soc. 135, 975 (2013).

    Google Scholar 

  29. Z. Lin, Z. Liu, N.J. Dudney, C. Liang, ACS Nano 7, 2829 (2013).

    Google Scholar 

  30. S. Teragawa, K. Aso, K. Tadanaga, A. Hayashi, M. Tatsumisago, J. Mater. Chem. A 2, 5095 (2014).

    Google Scholar 

  31. Y.E. Choi, K.H. Park, D.H. Kim, D.Y. Oh, H.R. Kwak, Y.-G. Lee, Y.S. Jung, ChemSusChem 10, 2605 (2017).

    Google Scholar 

  32. D.H. Kim, D.Y. Oh, K.H. Park, Y.E. Choi, Y.J. Nam, H.A. Lee, S.-M. Lee, Y.S. Jung, Nano Lett. 17, 3013 (2017).

    Google Scholar 

  33. F. Han, J. Yue, X. Fan, T. Gao, C. Luo, Z. Ma, L. Suo, C. Wang, Nano Lett. 16, 4521 (2016).

    Google Scholar 

  34. H. Huo, N. Zhao, J. Sun, F. Du, Y. Li, X. Guo, J. Power Sources 372, 1 (2017).

    Google Scholar 

  35. S. Ohta, J. Seki, Y. Yagi, Y. Kihira, T. Tani, T. Asaoka, J. Power Sources 265, 40 (2014).

    Google Scholar 

  36. K. Park, B.-C. Yu, J.-W. Jung, Y. Li, W. Zhou, H. Gao, S. Son, J.B. Goodenough, Chem. Mater. 28, 8051 (2016).

    Google Scholar 

  37. A. Aboulaich, R. Bouchet, G. Delaizir, V. Seznec, L. Tortet, M. Morcrette, P. Rozier, J.-M. Tarascon, V. Viallet, M. Dollé, Adv. Energy Mater. 1, 179 (2011).

    Google Scholar 

  38. T. Kato, T. Hamanaka, K. Yamamoto, T. Hirayama, F. Sagane, M. Motoyama, Y. Iriyama, J. Power Sources 260, 292 (2014).

    Google Scholar 

  39. W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram, J.B. Goodenough, J. Am. Chem. Soc. 138, 9385 (2016).

    Google Scholar 

  40. Y. Ren, T. Liu, Y. Shen, Y. Lin, C.-W. Nan, Ionics 23, 2521 (2017).

    Google Scholar 

  41. J. van den Broek, S. Afyon, J.L.M. Rupp, Adv. Energy Mater. 6, 1600736 (2016).

    Google Scholar 

  42. Y. Gong, K. Fu, S. Xu, J. Dai, T.R. Hamann, L. Zhang, G.T. Hitz, Z. Fu, Z. Ma, D.W. McOwen, X. Han, L. Hu, E.D. Wachsman, Mater. Today 21, 594 (2018).

    Google Scholar 

  43. K. Fu, Y. Gong, G.T. Hitz, D.W. McOwen, Y. Li, S. Xu, Y. Wen, L. Zhang, C. Wang, G. Pastel, J. Dai, B. Liu, H. Xie, Y. Yao, E.D. Wachsman, L. Hu, Energy Environ. Sci. 10, 1568 (2017).

    Google Scholar 

  44. X. Han, Y. Gong, K. Fu, X. He, G.T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E.D. Wachsman, L. Hu, Nat. Mater. 16, 572 (2016).

    Google Scholar 

  45. C. Yang, L. Zhang, B. Liu, S. Xu, T. Hamann, D. McOwen, J. Dai, W. Luo, Y. Gong, E.D. Wachsman, L. Hu, Proc. Natl. Acad. Sci. U.S.A. 115, 3770 (2018).

    Google Scholar 

  46. B. Wu, S. Wang, W.J. Evans IV, D.Z. Deng, J. Yang, J. Xiao, J. Mater. Chem. A 4, 15266 (2016).

    Google Scholar 

  47. B.D. McCloskey, J. Phys. Chem. Lett. 6, 4581 (2015).

    Google Scholar 

  48. S. Kim, M. Hirayama, S. Taminato, R. Kanno, Dalton Trans. 42, 13112 (2013).

    Google Scholar 

  49. R.-J. Chen, M. Huang, W.-Z. Huang, Y. Shen, Y.-H. Lin, C.-W. Nan, J. Mater. Chem. A 2, 13277 (2014).

    Google Scholar 

  50. C.-W. Ahn, J.-J. Choi, J. Ryu, B.-D. Hahn, J.-W. Kim, W.-H. Yoon, J.-H. Choi, D.-S. Park, J. Electrochem. Soc. 162, A60 (2015).

  51. S. Lobe, C. Dellen, M. Finsterbusch, H.G. Gehrke, D. Sebold, C.L. Tsai, S. Uhlenbruck, O. Guillon, J. Power Sources 307, 684 (2016).

    Google Scholar 

  52. E. Kazyak, K.-H. Chen, K.N. Wood, A.L. Davis, T. Thompson, A.R. Bielinski, A.J. Sanchez, X. Wang, C. Wang, J. Sakamoto, N.P. Dasgupta, Chem. Mater. 29, 3785 (2017).

    Google Scholar 

  53. E. Yi, W. Wang, J. Kieffer, R.M. Laine, J. Mater. Chem. A 4, 12947 (2016).

    Google Scholar 

  54. T. Inada, T. Kobayashi, N. Sonoyama, A. Yamada, S. Kondo, M. Nagao, R. Kanno, J. Power Sources 194, 1085 (2009).

    Google Scholar 

  55. Y.J. Nam, S.-J. Cho, D.Y. Oh, J.-M. Lim, S.Y. Kim, J.H. Song, Y.-G. Lee, S.-Y. Lee, Y.S. Jung, Nano Lett. 15, 3317 (2015).

    Google Scholar 

  56. A. Sakuda, K. Kuratani, M. Yamamoto, M. Takahashi, T. Takeuchi, H. Kobayashi, J. Electrochem. Soc. 164, A2474 (2017).

  57. M. Yamamoto, Y. Terauchi, A. Sakuda, M. Takahashi, Sci. Rep. 8, 1212 (2018).

    Google Scholar 

  58. K. Lee, S. Kim, J. Park, S.H. Park, A. Coskun, D.S. Jung, W. Cho, J.W. Choi, J. Electrochem. Soc. 164, A2075 (2017).

  59. D.Y. Oh, D.H. Kim, S.H. Jung, J.-G. Han, N.-S. Choi, Y.S. Jung, J. Mater. Chem. A 5, 20771 (2017).

    Google Scholar 

  60. S.P. Ong, Y. Mo, W.D. Richards, L. Miara, H.S. Lee, G. Ceder, Energy Environ. Sci. 6, 148 (2013).

    Google Scholar 

  61. E.A. Olivetti, G. Ceder, G.G. Gaustad, X. Fu, Joule 1, 229 (2017).

    Google Scholar 

  62. Y. Liang, Y. Jing, S. Gheytani, K.-Y. Lee, P. Liu, A. Facchetti, Y. Yao, Nat. Mater. 16, 841 (2017).

    Google Scholar 

  63. X. Chi, Y. Liang, F. Hao, Y. Zhang, J. Whiteley, H. Dong, P. Hu, S. Lee, Y. Yao, Angew. Chem. Int. Ed. Engl. 57, 2630 (2018).

    Google Scholar 

  64. G. Bucci, T. Swamy, Y.-M. Chiang, W.C. Carter, J. Mater. Chem. A 5, 19422 (2017).

    Google Scholar 

  65. R.-J. Chen, Y.-B. Zhang, T. Liu, B.-Q. Xu, Y.-H. Lin, C.-W. Nan, Y. Shen, ACS Appl. Mater. Interfaces 9, 9654 (2017).

    Google Scholar 

  66. Y. Wang, W. Lai, J. Power Sources 275, 612 (2015).

    Google Scholar 

  67. L. Cheng, E.J. Crumlin, W. Chen, R. Qiao, H. Hou, S.F. Lux, V. Zorba, R. Russo, R. Kostecki, Z. Liu, K. Persson, W. Yang, J. Cabana, T. Richardson, G. Chen, M. Doeff, Phys. Chem. Chem. Phys. 16, 18294 (2014).

    Google Scholar 

  68. A. Sharafi, E. Kazyak, A.L. Davis, S. Yu, T. Thompson, D.J. Siegel, N.P. Dasgupta, J. Sakamoto, Chem. Mater. 29, 7961 (2017).

    Google Scholar 

  69. Y. Li, X. Chen, A. Dolocan, Z. Cui, S. Xin, L. Xue, H. Xu, K. Park, J.B. Goodenough, J. Am. Chem. Soc. 140, 6448 (2018).

    Google Scholar 

  70. Y. Li, Z. Wang, C. Li, Y. Cao, X. Guo, J. Power Sources 248, 642 (2014).

    Google Scholar 

  71. S. Ito, S. Fujiki, T. Yamada, Y. Aihara, Y. Park, T.Y. Kim, S.-W. Baek, J.-M. Lee, S. Doo, N. Machida, J. Power Sources 248, 943 (2014).

    Google Scholar 

  72. T. Inada, K. Takada, A. Kajiyama, H. Sasaki, S. Kondo, M. Watanabe, M. Murayama, R. Kanno, J. Power Sources 119−121, 948 (2003).

  73. N.H. Menzler, F. Tietz, S. Uhlenbruck, H.P. Buchkremer, D. Stöver, J. Mater. Sci. 45, 3109 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, F., Han, F., Liang, Y. et al. Architectural design and fabrication approaches for solid-state batteries. MRS Bulletin 43, 775–781 (2018). https://doi.org/10.1557/mrs.2018.211

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.211

Navigation