Skip to main content
Log in

Data-driven design of inorganic materials with the Automatic Flow Framework for Materials Discovery

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The expansion of programmatically accessible materials data has cultivated opportunities for data-driven approaches. Workflows such as the Automatic Flow Framework for Materials Discovery not only manage the generation, storage, and dissemination of materials data, but also leverage the information for thermodynamic formability modeling, such as the prediction of phase diagrams and properties of disordered materials. In combination with standardized parameter sets, the wealth of data is ideal for training machine-learning algorithms, which have already been employed for property prediction, descriptor development, design rule discovery, and the identification of candidate functional materials. These methods promise to revolutionize the path to synthesis, and ultimately transform the practice of traditional materials discovery to one of rational and autonomous materials design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. W. Kohn, L.J. Sham, Phys. Rev. 140 (4), A1133 (1965). doi:10.1103/PhysRev.140.A1133.

    Google Scholar 

  2. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1994) pp. 142–197.

  3. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, UK, 2004) pp. 119–184, doi:10.1017/CBO9780511805769.

  4. G. Kresse, J. Fürthmüller, Phys. Rev. B Condens. Matter 54, 11169 (1996).

    Google Scholar 

  5. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009).

    Google Scholar 

  6. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty, D.C. Allan, Comput. Mater. Sci. 25, 478 (2002).

    Google Scholar 

  7. V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, Comput. Phys. Commun. 180, 2175 (2009).

    Google Scholar 

  8. P. Haas, F. Tran, P. Blaha, Phys. Rev. B Condens. Matter 79, 085104 (2009).

    Google Scholar 

  9. S. Curtarolo, W. Setyawan, G.L.W. Hart, M. Jahnátek, R.V. Chepulskii, R.H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M.J. Mehl, H.T. Stokes, D.O. Demchenko, D. Morgan, Comput. Mater. Sci. 58, 218 (2012).

    Google Scholar 

  10. W. Setyawan, S. Curtarolo, Comput. Mater. Sci. 49, 299 (2010).

    Google Scholar 

  11. C.E. Calderon, J.J. Plata, C. Toher, C. Oses, O. Levy, M. Fornari, A. Natan, M.J. Mehl, G.L.W. Hart, M. Buongiorno Nardelli, S. Curtarolo, Comput. Mater. Sci. 108 (Pt. A), 233 (2015).

  12. A.R. Supka, T.E. Lyons, L.S.I. Liyanage, P. D’Amico, R. Al Rahal Al Orabi, S. Mahatara, P. Gopal, C. Toher, D. Ceresoli, A. Calzolari, S. Curtarolo, M. Buongiorno Nardelli, M. Fornari, Comput. Mater. Sci. 136, 76 (2017).

    Google Scholar 

  13. M. Scheffler, C. Draxl, Computer Center of the Max Planck Society, Garching, NOMAD Repository (2014), http://nomad-repository.eu.

  14. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1, 011002 (2013).

    Google Scholar 

  15. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, JOM 65, 1501 (2013).

    Google Scholar 

  16. D.D. Landis, J.S. Hummelshøj, S. Nestorov, J. Greeley, M. Dułak, T. Bligaard, J.K. Nørskov, K.W. Jacobsen, Comput. Sci. Eng. 14, 51 (2012).

    Google Scholar 

  17. G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, B. Kozinsky, Comput. Mater. Sci. 111, 218 (2016).

    Google Scholar 

  18. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, M. Buongiorno Nardelli, N. Mingo, O. Levy, Comput. Mater. Sci. 58, 227 (2012).

    Google Scholar 

  19. R.H. Taylor, F. Rose, C. Toher, O. Levy, K. Yang, M. Buongiorno Nardelli, S. Curtarolo, Comput. Mater. Sci. 93, 178 (2014).

    Google Scholar 

  20. F. Rose, C. Toher, E. Gossett, C. Oses, M. Buongiorno Nardelli, M. Fornari, S. Curtarolo, Comput. Mater. Sci. 137, 362 (2017).

    Google Scholar 

  21. K. Yang, W. Setyawan, S. Wang, M. Buongiorno Nardelli, S. Curtarolo, Nat. Mater. 11, 614 (2012).

    Google Scholar 

  22. O. Isayev, D. Fourches, E.N. Muratov, C. Oses, K. Rasch, A. Tropsha, S. Curtarolo, Chem. Mater. 27, 735 (2015).

    Google Scholar 

  23. O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, A. Tropsha, Nat. Commun. 8, 15679 (2017).

    Google Scholar 

  24. G. Ceder, Y.-M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.-I. Jang, B. Huang, Nature 392, 694 (1998).

    Google Scholar 

  25. A. van Roekeghem, J. Carrete, C. Oses, S. Curtarolo, N. Mingo, Phys. Rev. X 6, 041061 (2016).

    Google Scholar 

  26. F. Legrain, J. Carrete, A. van Roekeghem, S. Curtarolo, N. Mingo, Chem. Mater. 29, 6220 (2017).

    Google Scholar 

  27. C. Nyshadham, C. Oses, J.E. Hansen, I. Takeuchi, S. Curtarolo, G.L.W. Hart, Acta Mater. 122, 438 (2017).

    Google Scholar 

  28. E. Perim, D. Lee, Y. Liu, C. Toher, P. Gong, Y. Li, W.N. Simmons, O. Levy, J.J. Vlassak, J. Schroers, S. Curtarolo, Nat. Commun. 7, 12315 (2016).

    Google Scholar 

  29. S. Sanvito, C. Oses, J. Xue, A. Tiwari, M. Zic, T. Archer, P. Tozman, M. Venkatesan, J.M.D. Coey, S. Curtarolo, Sci. Adv. 3, e1602241 (2017).

  30. G. Bergerhoff, R. Hundt, R. Sievers, I.D. Brown, J. Chem. Inf. Comput. Sci. 23, 66 (1983).

    Google Scholar 

  31. M.J. Mehl, D. Hicks, C. Toher, O. Levy, R.M. Hanson, G.L.W. Hart, S. Curtarolo, Comput. Mater. Sci. 136, S1 (2017).

  32. D. Hicks, C. Oses, E. Gossett, G. Gomez, R.H. Taylor, C. Toher, M.J. Mehl, O. Levy, S. Curtarolo, Acta Crystallogr. A Found. Adv. 74, 184 (2018).

    Google Scholar 

  33. C. Toher, C. Oses, J.J. Plata, D. Hicks, F. Rose, O. Levy, M. de Jong, M.D. Asta, M. Fornari, M. Buongiorno Nardelli, S. Curtarolo, Phys. Rev. Mater. 1, 015401 (2017).

    Google Scholar 

  34. P. Nath, J.J. Plata, D. Usanmaz, R. Al Rahal Al Orabi, M. Fornari, M. Buongiorno Nardelli, C. Toher, S. Curtarolo, Comput. Mater. Sci. 125, 82 (2016).

    Google Scholar 

  35. P. Nath, J.J. Plata, D. Usanmaz, C. Toher, M. Fornari, M. Buongiorno Nardelli, S. Curtarolo, Scr. Mater. 129, 88 (2017).

    Google Scholar 

  36. J.J. Plata, P. Nath, D. Usanmaz, J. Carrete, C. Toher, M. de Jong, M.D. Asta, M. Fornari, M. Buongiorno Nardelli, S. Curtarolo, NPJ Comput. Mater. 3, 45 (2017).

    Google Scholar 

  37. C. Toher, J.J. Plata, O. Levy, M. de Jong, M.D. Asta, M. Buongiorno Nardelli, S. Curtarolo, Phys. Rev. B Condens. Matter 90, 174107 (2014).

    Google Scholar 

  38. K. Yang, C. Oses, S. Curtarolo, Chem. Mater. 28, 6484 (2016).

    Google Scholar 

  39. L. Hedin, Phys. Rev. 139, A796 (1965).

  40. F. Aryasetiawan, O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).

    Google Scholar 

  41. H. Jiang, R.I. Gomez-Abal, P. Rinke, M. Scheffler, Phys. Rev. B Condens. Matter 82, 045108 (2010).

    Google Scholar 

  42. L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, M. Scheffler, Phys. Rev. Lett. 114, 105503 (2015).

    Google Scholar 

  43. R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler, L.M. Ghiringhelli, Phys. Rev. Mater. 2, 083802 (2018).

    Google Scholar 

  44. Y. Lederer, C. Toher, K.S. Vecchio, S. Curtarolo, Acta Mater. (2018), doi:10.1016/j.actamat.2018.07.042.

  45. V. Stanev, C. Oses, A.G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, I. Takeuchi, NPJ Comput. Mater. 4, 29 (2018).

    Google Scholar 

  46. J.S. Smith, O. Isayev, A.E. Roitberg, Chem. Sci. 8, 3192 (2017).

    Google Scholar 

  47. A. Walsh, Nat. Chem. 7, 274 (2015).

    Google Scholar 

  48. S. Curtarolo, D. Morgan, G. Ceder, Calphad 29, 163 (2005).

    Google Scholar 

  49. C.B. Barber, D.P. Dobkin, H. Huhdanpaa, ACM Trans. Math. Softw. 22, 469 (1996).

    Google Scholar 

  50. G.L.W. Hart, S. Curtarolo, T.B. Massalski, O. Levy, Phys. Rev. X 3, 041035 (2013).

    Google Scholar 

  51. C. Oses, E. Gossett, D. Hicks, F. Rose, M.J. Mehl, E. Perim, I. Takeuchi, S. Sanvito, M. Scheffler, Y. Lederer, O. Levy, C. Toher, S. Curtarolo, “AFLOWCHULL: Cloud-Orientated Platform for Autonomous Phase Stability Analysis,” submitted arXiv:1806.06901 (2018).

  52. M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, Eds., High-Entropy Alloys: Fundamentals and Applications (Springer, Cham, Switzerland, 2015).

    Google Scholar 

  53. O.N. Senkov, J.D. Miller, D.B. Miracle, C. Woodward, Nat. Commun. 6, 6529 (2015).

    Google Scholar 

  54. X. Lim, Nature 533, 306 (2016).

    Google Scholar 

  55. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18, 1758 (2010).

    Google Scholar 

  56. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014).

    Google Scholar 

  57. O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19, 698 (2011).

    Google Scholar 

  58. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227 (2016).

    Google Scholar 

  59. F. von Rohr, M.J. Winiarski, J. Tao, T. Klimczuk, R.J. Cava, Proc. Natl. Acad. Sci. U.S.A. 113, E7144 (2016).

  60. C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.-P. Maria, Nat. Commun. 6, 8485 (2015).

    Google Scholar 

  61. Z. Rak, C.M. Rost, M. Lim, P. Sarker, C. Toher, S. Curtarolo, J.-P. Maria, D.W. Brenner, J. Appl. Phys. 120, 095105 (2016).

    Google Scholar 

  62. J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, J. Luo, Sci. Rep. 6, 37946 (2016).

    Google Scholar 

  63. D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, N. Dragoe, Phys. Status Solidi RRL 10, 328 (2016).

    Google Scholar 

  64. D. Bérardan, S. Franger, A.K. Meena, N. Dragoe, J. Mater. Chem. A 4, 9536 (2016).

    Google Scholar 

  65. G.L.W. Hart, R.W. Forcade, Phys. Rev. B Condens. Matter 77, 224115 (2008).

    Google Scholar 

  66. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).

    Google Scholar 

  67. W. Chen, J. Ketkaew, Z. Liu, R.M. Ojeda Mota, K. O’Brien, C.S. da Silva, J. Schroers, Scr. Mater. 107, 1 (2015).

    Google Scholar 

  68. J. Schroers, N. Paton, Adv. Mater. Proc. 164, 61 (2006).

    Google Scholar 

  69. J. Schroers, T.M. Hodges, G. Kumar, H. Raman, A.J. Barnes, Q. Pham, T.A. Waniuk, Mater. Today 14, 14 (2011).

    Google Scholar 

  70. G. Kaltenboeck, M.D. Demetriou, S. Roberts, W.L. Johnson, Nat. Commun. 7, 10576 (2016).

    Google Scholar 

  71. J. Schroers, Adv. Mater. 22, 1566 (2010).

    Google Scholar 

  72. W.L. Johnson, J.H. Na, M.D. Demetriou, Nat. Commun. 7, 10313 (2016).

    Google Scholar 

  73. M.F. Ashby, A.L. Greer, Scr. Mater. 54, 321 (2006).

    Google Scholar 

  74. J.L.C. Daams, P. Villars, Eng. Appl. Artif. Intell. 13, 507 (2000).

    Google Scholar 

  75. J.L.C. Daams, J.H.N. van Vucht, P. Villars, J. Alloys Compd. 182, 1 (1992).

    Google Scholar 

  76. A. van de Walle, Calphad 33, 266 (2009).

    Google Scholar 

  77. D. Usanmaz, P. Nath, C. Toher, J.J. Plata, R. Friedrich, M. Fornari, M. Buongiorno Nardelli, S. Curtarolo, Chem. Mater. 30, 2331 (2018).

    Google Scholar 

  78. D. Usanmaz, P. Nath, J.J. Plata, G.L.W. Hart, I. Takeuchi, M. Buongiorno Nardelli, M. Fornari, S. Curtarolo, Phys. Chem. Chem. Phys. 18, 5005 (2016).

    Google Scholar 

  79. H.K.D.H. Bhadeshia, ISIJ Int. 39, 966 (1999).

    Google Scholar 

  80. E.O. Pyzer-Knapp, K. Li, A. Aspuru-Guzik, Adv. Funct. Mater. 25, 6495 (2015).

    Google Scholar 

  81. R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, T.D. Hirzel, D. Duvenaud, D. Maclaurin, M.A. Blood-Forsythe, H.S. Chae, M. Einzinger, D.-G. Ha, T. Wu, G. Markopoulos, S. Jeon, H. Kang, H. Miyazaki, M. Numata, S. Kim, W. Huang, S.I. Hong, M. Baldo, R.P. Adams, A. Aspuru-Guzik, Nat. Mater. 15, 1120 (2016).

    Google Scholar 

  82. B.G. Sumpter, D.W. Noid, Annu. Rev. Mater. Sci. 26, 223 (1996).

    Google Scholar 

  83. L. Breiman, Mach. Learn. 45, 5 (2001).

    Google Scholar 

  84. J.H. Friedman, Ann. Stat. 29, 1189 (2001).

    Google Scholar 

  85. C. Cortes, V. Vapnik, Mach. Learn. 20, 273 (1995).

    Google Scholar 

  86. M. de Jong, W. Chen, R. Notestine, K.A. Persson, G. Ceder, A. Jain, M.D. Asta, A. Gamst, Sci. Rep. 6, 34256 (2016).

    Google Scholar 

  87. J. Carrete, W. Li, N. Mingo, S. Wang, S. Curtarolo, Phys. Rev. X 4, 011019 (2014).

    Google Scholar 

  88. D. Bajusz, A. Rácz, K. Héberger, J. Cheminform. 7, 20 (2015).

    Google Scholar 

  89. National Institute of Materials Science (NIMS), SuperCon (2011), http://supercon. nims.go.jp/index_en.html.

  90. G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 36, 354 (2006).

    Google Scholar 

  91. E. Gossett, C. Toher, C. Oses, O. Isayev, F. Legrain, F. Rose, E. Zurek, J. Carrete, N. Mingo, A. Tropsha, S. Curtarolo, Comput. Mater. Sci. 152, 134 (2018).

    Google Scholar 

  92. D. Crockford, JavaScript Object Notation (JSON) Format (2017), http://www.json.org.

Download references

Acknowledgments

We thank E. Perim, Y. Lederer, O. Levy, O. Isayev, A. Tropsha, N. Mingo, J. Carrete, J.J. Vlassak, J. Schroers, D. Hicks, and E. Gossett for insightful discussions. CO. acknowledges support from the NSF Graduate Research Fellowship No. DGF1106401. S.C. acknowledges support by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corey Oses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oses, C., Toher, C. & Curtarolo, S. Data-driven design of inorganic materials with the Automatic Flow Framework for Materials Discovery. MRS Bulletin 43, 670–675 (2018). https://doi.org/10.1557/mrs.2018.207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.207

Navigation