Skip to main content
Log in

Harnessing the Materials Project for machine-learning and accelerated discovery

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Improvements in computational resources over the last decade are enabling a new era of computational prediction and design of novel materials. The resulting resources are databases such as the Materials Project (www.materialsproject.org), which is harnessing the power of supercomputing together with state-of-the-art quantum mechanical theory to compute the properties of all known inorganic materials, to design novel materials, and to make the data available for free to the community, together with online analysis and design algorithms. The current release contains data derived from quantum mechanical calculations for more than 70,000 materials and millions of associated materials properties. The software infrastructure carries out thousands of calculations per week, enabling screening and predictions for both novel solids as well as molecular species with targeted properties. As the rapid growth of accessible computed materials properties continues, the next frontier is harnessing that information for automated learning and accelerated discovery. In this article, we highlight some of the emerging and exciting efforts, and successes, as well as current challenges using descriptor-based and machine-learning methods for data-accelerated materials design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Y. Lecun, Y. Bengio, G. Hinton, Nature 521, 436 (2015).

    Google Scholar 

  2. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1, 011002 (2013).

    Google Scholar 

  3. G. Bergerhoff, R. Hundt, R. Sievers, I.D. Brown, J. Chem. Inf. Comput. Sci. 23, 66 (1983).

    Google Scholar 

  4. S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Ruhl, C. Wolverton, NPJ Comput. Mater. 1, 15010 (2015).

    Google Scholar 

  5. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, O. Levy, Comput. Mater. Sci. 58, 227 (2012).

    Google Scholar 

  6. A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput, I. Tanaka, Phys. Rev. Lett. 115, 205901 (2015).

    Google Scholar 

  7. M. de Jong, W. Chen, H. Geerlings, M. Asta, K.A. Persson, Sci. Data 2, 150053 (2015).

    Google Scholar 

  8. M. de Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C.K. Ande, S. van Der Zwaag, J.J. Plata, C. Toher, S. Curtarolo, G. Ceder, K.A. Persson, M. Asta, Sci. Data 2, 150009 (2015).

    Google Scholar 

  9. J. Carrete, W. Li, N. Mingo, S.D. Wang, S. Curtarolo, Phys. Rev. X 4, 011019 (2014).

    Google Scholar 

  10. F. Ricci, W. Chen, U. Aydemir, G.J. Snyder, G.-M. Rignanese, A. Jain, G. Hautier, Sci. Data 4, 170085 (2017).

    Google Scholar 

  11. S.P. Ong, S. Cholia, A. Jain, M. Brafman, D. Gunter, G. Ceder, K.A. Persson, Comput. Mater. Sci. 97, 209 (2015).

    Google Scholar 

  12. S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, G. Ceder, Comput. Mater. Sci. 68, 314 (2013).

    Google Scholar 

  13. S.S. Young, F. Yuan, M. Zhu, Mol. Inform. 31, 707 (2012).

    Google Scholar 

  14. A. Seko, A. Togo, I. Tanaka, Nanoinformatics 3, 23 (2018).

    Google Scholar 

  15. L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, NPJ Comput. Mater. 2, 16028 (2016).

    Google Scholar 

  16. A. Seko, T. Maekawa, K. Tsuda, I. Tanaka, Phys. Rev. B Condens. Matter Mater. Phys. 89, 1 (2014).

    Google Scholar 

  17. J. Carrete, N. Mingo, S. Wang, S. Curtarolo, Adv. Funct. Mater. 24, 7427 (2014).

    Google Scholar 

  18. H. Wu, A. Lorenson, B. Anderson, L. Witteman, H. Wu, B. Meredig, D. Morgan, Comput. Mater. Sci. 134, 160 (2017).

    Google Scholar 

  19. M. de Jong, W. Chen, R. Notestine, K. Persson, G. Ceder, A. Jain, M. Asta, A. Gamst, Sci. Rep. 6, 34256 (2016).

    Google Scholar 

  20. F. Legrain, J. Carrete, A. van Roekeghem, S. Curtarolo, N. Mingo, Chem. Mater. 29, 6220 (2017).

    Google Scholar 

  21. M.W. Gaultois, A.O. Oliynyk, A. Mar, T.D. Sparks, G.J. Mulholland, B. Meredig, APL Mater. 4 (5), 05312 (2016).

    Google Scholar 

  22. O. Isayev, C. Oses, S. Curtarolo, A. Tropsha, Nat. Commun. 8, 15679 (2017).

    Google Scholar 

  23. O. Isayev, D. Fourches, E.N. Muratov, C. Oses, K. Rasch, A. Tropsha, S. Curtarolo, Chem. Mater. 27, 735 (2015).

    Google Scholar 

  24. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104, 1 (2010).

    Google Scholar 

  25. A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B Condens. Matter Mater. Phys. 87, 1 (2013).

    Google Scholar 

  26. H. Huo, M. Rupp, (2017), https://www.researchgate.net/profile/Matthias_Rupp/publication/316429137_Unified_Representation_for_Machine_Learning_of_Molecules_and_Crystals/links/597ba6ff0f7e9b880293f6bf/Unified-Representationfor-Machine-Learning-of-Molecules-and-Crystals.pdf.

  27. J. Behler, M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007).

    Google Scholar 

  28. F. Faber, A. Lindmaa, O.A. von Lilienfeld, R. Armiento, Int. J. Quantum Chem. 1 (115), 1094 (2015).

    Google Scholar 

  29. T.L. Pham, H. Kino, K. Terakura, T. Miyake, I. Takigawa, K. Tsuda, H.C. Dam, Sci. Technol. Adv. Mater. 18 (1), 756 (2017).

    Google Scholar 

  30. L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, M. Scheffler, Phys. Rev. Lett. 114 (10), 105503 (2015).

    Google Scholar 

  31. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, NPJ Comput. Mater. 3 (1), 54 (2017).

    Google Scholar 

  32. G. Chandrashekar, F. Sahin, Comput. Electr. Eng. 40, 16 (2014).

    Google Scholar 

  33. Q.V. Le, Proc. 2013 IEEE Int. Conf. Acoust. Speech Signal Process. (2013), p. 8595.

  34. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, 2009 IEEE Conf. Comput. Vis. Pattern Recognit. (2009), p. 248.

  35. M.L. Hutchinson, E. Antono, B.M. Gibbons, S. Paradiso, J. Ling, B. Meredig, ArXiv preprint arXiv:1711.05099 (2017).

  36. F.A. Faber, A. Lindmaa, O.A. Von Lilienfeld, R. Armiento, Phys. Rev. Lett. 117, 135502 (2016).

    Google Scholar 

  37. W. Sun, S.T. Dacek, S.P. Ong, G. Hautier, A. Jain, W.D. Richards, A.C. Gamst, K.A. Persson, G. Ceder, Sci. Adv. 2, e1600225 (2016).

  38. G. Hautier, S.P. Ong, A. Jain, C.J. Moore, G. Ceder, Phys. Rev. B Condens. Matter Mater. Phys. 85, 155208 (2012).

    Google Scholar 

  39. L. Wang, T. Maxisch, G. Ceder, Phys. Rev. B Condens. Matter 73, 195107 (2006).

    Google Scholar 

  40. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Google Scholar 

  41. M.K.Y. Chan, G. Ceder, Phys. Rev. Lett. 105, 196403 (2010).

    Google Scholar 

  42. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    Google Scholar 

  43. F. Fuchs, J. Furthmüller, F. Bechstedt, M. Shishkin, G. Kresse, Phys. Rev. B Condens. Matter 76, 115109 (2007).

    Google Scholar 

  44. J. Lee, A. Seko, K. Shitara, K. Nakayama, I. Tanaka, Phys. Rev. B Condens. Matter 93, 115104 (2016).

    Google Scholar 

  45. S.F. Pugh, London Edinburgh Dublin Philos. Mag. J. Sci. 45, 823 (1954).

    Google Scholar 

  46. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Google Scholar 

  47. C. Chen, Z. Deng, R. Tran, H. Tang, I.-H. Chu, S.P. Ong, Phys. Rev. Mater. 1, 043603 (2017).

    Google Scholar 

  48. C. Zheng, K. Mathew, C. Chen, Y. Chen, H. Tang, A. Dozier, J.J. Kas, F.D. Vila, J.J. Rehr, L.F.J. Piper, K. Persson, S.P. Ong, NPJ Comput. Mater. 4 (1), 12 (2018).

    Google Scholar 

  49. T. Xie, J.C. Grossman, Phys. Rev. Lett. 120, 145301 (2018).

    Google Scholar 

  50. A. Jain, S.P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman, G. Petretto, G.-M. Rignanese, G. Hautier, D. Gunter, K.A. Persson, Concurr. Comput. 27, 5037 (2015).

    Google Scholar 

  51. K. Mathew, J.H. Montoya, A. Faghaninia, S. Dwaraknath, M. Aykol, H. Tang, I.-H. Chu, T. Smidt, B. Bocklund, M. Horton, J. Dagdelen, B. Wood, Z.K. Liu, J. Neaton, S.P. Ong, K. Persson, A. Jain, Comput. Mater. Sci. 139, 140 (2017).

    Google Scholar 

  52. B. Medasani, A. Gamst, H. Ding, W. Chen, K.A. Persson, M. Asta, A. Canning, M. Haranczyk, NPJ Comput. Mater. 2 (1), 1 (2016).

    Google Scholar 

  53. J. Schmidt, J. Shi, P. Borlido, L. Chen, S. Botti, M.A.L. Marques, Chem. Mater. 29, 5090 (2017).

    Google Scholar 

  54. G. Pilania, A. Mannodi-Kanakkithodi, B.P. Uberuaga, R. Ramprasad, J.E. Gubernatis, T. Lookman, Sci. Rep. 6, 19375 (2016).

    Google Scholar 

  55. I. Petousis, D. Mrdjenovich, E. Ballouz, M. Liu, D. Winston, W. Chen, T. Graf, T.D. Schladt, K.A. Persson, F.B. Prinz, Sci. Data 4, 160134 (2017).

    Google Scholar 

  56. G. Petretto, S. Dwaraknath, H.P.C. Miranda, D. Winston, M. Giantomassi, M.J. Van Setten, X. Gonze, K.A. Persson, G. Hautier, G.-M. Rignanese, Sci. Data 5, 180065 (2018).

    Google Scholar 

  57. N.E.R. Zimmermann, M.K. Horton, A. Jain, M. Haranczyk, Front. Mater. 4, 1 (2017).

    Google Scholar 

Download references

Acknowledgments

S.D., A.J., and K.P. acknowledge support by the US Department of Energy (DOE) Basic Energy Sciences (BES) Materials Project Program, Contract No. KC23MP. W.Y., C.C., and S.P.O. acknowledge support from the Samsung Advanced Institute of Technology’s (SAIT) Global Research Outreach (GRO) Program for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weike Ye.

Additional information

denotes equal contribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, W., Chen, C., Dwaraknath, S. et al. Harnessing the Materials Project for machine-learning and accelerated discovery. MRS Bulletin 43, 664–669 (2018). https://doi.org/10.1557/mrs.2018.202

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.202

Navigation