Skip to main content
Log in

High piezoelectricity by multiphase coexisting point: Barium titanate derivatives

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

BaTiO3-based lead-free piezoelectric materials have long been known as “a mediocre class of piezoelectric materials.” However, they have seen significant renewed interest in recent years ever since the discovery of high piezoelectricity in Ba(Zr, Ti)O3-(Ba, Ca)TiO3 as well as the related Ba(Sn, Ti)O3-(Ba, Ca)TiO3 and Ba(Hf, Ti)O3-(Ba, Ca)TiO3 systems. The unexpectedly high piezoelectricity in this class of BaTiO3 (BT)-based materials is still not well understood and has stimulated significant research activity. We present a concise discussion of the notions leading to high piezoelectricity in BaTiO3-based systems. In particular, the possible role of a multiphase-coexisting point is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. F. Jona, G. Shirane, Ferroelectric Crystals (Pergamon Press, Oxford, UK, 1962).

    Google Scholar 

  2. B. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971).

    Google Scholar 

  3. T. Sluka, A.K. Tagantsev, D. Damjanovic, M. Gureev, N. Setter, Nat. Commun. 3, 748 (2012).

    Google Scholar 

  4. S. Wada, K. Yako, H. Kakemoto, T. Tsurumi, T. Kiguchi, J. Appl. Phys. 98, 014109 (2005).

    Google Scholar 

  5. S. Wada, K. Takeda, T. Muraishi, H. Kakemoto, T. Tsurumi, T. Kimura, Ferroelectrics 373, 11 (2008).

    Google Scholar 

  6. T. Karaki, K. Yan, T. Miyamoto, M. Adachi, Jpn. J. Appl. Phys. 46, 97 (2007).

    Google Scholar 

  7. Z.Y. Shen, J.F. Li, J. Ceram. Soc. Jpn. 118, 940 (2010).

    Google Scholar 

  8. X. Ren, Nat. Mater. 3, 91 (2004).

    Google Scholar 

  9. M. Budimir, D. Damjanovic, N. Setter, Phys. Rev. B Condens. Matter 72, 064107 (2005).

    Google Scholar 

  10. W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009).

    Google Scholar 

  11. D. Xue, Y. Zhou, H. Bao, Appl. Phys. Lett. 99, 122901 (2011).

    Google Scholar 

  12. C. Zhou, W. Liu, D. Xue, Appl. Phys. Lett. 100, 222910 (2012).

    Google Scholar 

  13. M. Acosta, N. Novak, W. Jo, Acta Mater. 80, 48 (2014).

    Google Scholar 

  14. M. Acosta, N. Khakpash, T. Someya, N. Novak, W. Jo, H. Nagata, G.A. Rossetti, J. Rödel, Phys. Rev. B Condens. Matter 91, 104108 (2015).

    Google Scholar 

  15. D.R.J. Brandt, M. Acosta, J. Koruza, K.G. Webber, J. Appl. Phys. 115, 204107 (2014).

    Google Scholar 

  16. F. Benabdallah, A. Simon, H. Khemakhem, C. Elissalde, M. Maglione, J. Appl. Phys. 109, 124116 (2011).

    Google Scholar 

  17. D. Xue, Y. Zhou, H. Bao, J. Gao, C. Zhou, X. Ren, J. Appl. Phys. 109, 054110 (2011).

    Google Scholar 

  18. D. Xue, J. Gao, Y. Zhou, X. Ding, J. Sun, T. Lookman, X. Ren, J. Appl. Phys. 117, 124107 (2015).

    Google Scholar 

  19. J. Gao, X. Hu, L. Zhang, F. Li, L. Zhang, Y. Wang, Y. Hao, L. Zhong, X. Ren, Appl. Phys. Lett. 104, 252909 (2014).

    Google Scholar 

  20. G. Tutuncu, B. Li, K. Bowman, J.L. Jones, J. Appl. Phys. 115, 144104 (2014).

    Google Scholar 

  21. W. Wang, L.D. Wang, W.L. Li, D. Xu, Y.F. Hou, W.P. Cao, Y. Feng, W.D. Fei, Ceram. Int. 40, 14907 (2014).

    Google Scholar 

  22. M.C. Ehmke, J. Glaum, M. Hoffman, J.E. Blendell, K.J. Bowman, J. Am. Ceram. Soc. 96, 9 (2013).

    Google Scholar 

  23. M. Acosta, N. Novak, G.A. Rossetti, J. Rödel, Appl. Phys. Lett. 107, 142906 (2015).

    Google Scholar 

  24. M.C. Ehmke, N.H. Khansur, J.E. Daniels, J.E. Blendell, K.J. Bowman, Acta Mater. 66, 340 (2014).

    Google Scholar 

  25. F. Li, L. Jin, R. Guo, Appl. Phys. Lett. 105, 232903 (2014).

    Google Scholar 

  26. M. Acosta, L.A. Schmitt, C. Cazorla, A. Studer, A. Zintler, J. Glaum, H.J. Kleebe, W. Donner, M. Hoffman, J. Rödel, M. Hinterstein, Sci. Rep. 6, 28742 (2016).

    Google Scholar 

  27. V. Rojas, J. Koruza, E.A. Patterson, M. Acosta, X. Jiang, N. Liu, C. Dietz, J. Rödel, J. Am. Ceram. Soc. 100, 4699 (2017).

    Google Scholar 

  28. H.I. Humburg, M. Acosta, W. Jo, K.G. Webber, J. Rödel, J. Eur. Ceram. Soc. 35, 1209 (2015).

    Google Scholar 

  29. L. Zhao, X. Ke, W. Wang, Phys. Rev. B Condens. Matter 95, 020101 (2017).

    Google Scholar 

  30. M. Acosta, N. Novak, V. Rojas, Appl. Phys. Rev. 4, 041305 (2017).

    Google Scholar 

  31. M.C. Ehmke, S.N. Ehrlich, J.E. Blendell, K.J. Bowman, J. Appl. Phys. 111, 124110 (2012).

    Google Scholar 

  32. A.B. Haugen, J.S. Forrester, D. Damjanovic, B. Li, K.J. Bowman, J.L. Jones, J. Appl. Phys. 113, 014103 (2013).

    Google Scholar 

  33. J. Gao, D. Xue, Y. Wang, D. Wang, L. Zhang, H. Wu, S. Guo, H. Bao, C. Zhou, W. Liu, Appl. Phys. Lett. 99, 092901 (2011).

    Google Scholar 

  34. J. Gao, L. Zhang, D. Xue, T. Kimoto, M. Song, L. Zhong, X. Ren, J. Appl. Phys. 115, 054108 (2014).

    Google Scholar 

  35. D.S. Keeble, F. Benabdallah, P.A. Thomas, M. Maglione, J. Kreisel, Appl. Phys. Lett. 102, 092903 (2013).

    Google Scholar 

  36. L. Zhang, M. Zhang, L. Wang, C. Zhou, Z. Zhang, Y. Yao, L. Zhang, D. Xue, X. Lou, X. Ren, Appl. Phys. Lett. 105, 162908 (2014).

    Google Scholar 

  37. D. Damjanovic, A. Biancoli, L. Batooli, A. Vahabzadeh, J. Trodahl, Appl. Phys. Lett. 100, 192907 (2012).

    Google Scholar 

  38. S. Zhukov, M. Acosta, Y.A. Genenko, H.V. Seggern, J. Appl. Phys. 118, 134104 (2015).

    Google Scholar 

  39. B. Noheda, D.E. Cox, G. Shirane, Appl. Phys. Lett. 74, 2059 (1999).

    Google Scholar 

  40. J.H. Gao, X.H. Hu, Y. Wang, Y.B. Liu, L.X. Zhang, X.Q. Ke, L.S. Zhong, H. Zhao, X.B. Ren, Acta Mater. 125, 177 (2017).

    Google Scholar 

  41. J. Gao, D. Xue, W. Liu, C. Zhou, X. Ren, Actuators 6 (3), 24 (2017).

    Google Scholar 

  42. J. Gao, D. Ye, X. Hu, X. Ke, L. Zhong, S. Li, L. Zhang, Y. Wang, D. Wang, Y. Wang, Y. Liu, H. Xiao, X. Ren, Europhys. Lett. 115, 37001 (2016).

    Google Scholar 

  43. J. Gao, Y. Wang, Y. Liu, X. Hu, X. Ke, L. Zhong, Y. He, X. Ren, Sci. Rep. 7, 40916 (2017).

    Google Scholar 

  44. J. Gao, Y. Liu, Y. Wang, X. Hu, W. Yan, X. Ke, L. Zhong, Y. He, X. Ren, J. Phys. Chem. C 121, 13106 (2017).

    Google Scholar 

  45. H. Guo, C. Zhou, X. Ren, X. Tan, Phys. Rev. B Condens. Matter 89, 100104 (2014).

    Google Scholar 

  46. H. Guo, B.K. Voas, S. Zhang, C. Zhou, X. Ren, S.P. Beckman, X. Tan, Phys. Rev. B Condens. Matter 90, 014103 (2014).

    Google Scholar 

  47. M. Zakhozheva, L.A. Schmitt, M. Acosta, W. Jo, J. Rödel, H.-J. Kleebe, Appl. Phys. Lett. 105, 112904 (2014).

    Google Scholar 

  48. M. Zakhozheva, L.A. Schmitt, M. Acosta, H. Guo, W. Jo, R. Schierholz, H.J. Kleebe, X. Tan, Phys. Rev. Appl. 3, 064018 (2015).

    Google Scholar 

  49. D. Xue, Y. Zhou, J. Gao, X. Ding, X. Ren, Europhys. Lett. 100, 17010 (2012).

    Google Scholar 

  50. M. Porta, T. Lookman, Phys. Rev. B Condens. Matter 83, 174108 (2011).

    Google Scholar 

  51. A.A. Heitmann, G.A. Rossetti, J. Am. Ceram. Soc. 97, 1661 (2014).

    Google Scholar 

  52. T. Yang, X. Ke, Y. Wang. Sci. Rep. 6, 33392 (2016).

  53. J. Gao, Y. Hao, S. Ren, T. Kimoto, M. Fang, H. Li, Y. Wang, L. Zhong, S. Li, X. Ren, J. Appl. Phys. 117, 084106 (2015).

    Google Scholar 

  54. J. Gao, S. Ren, L. Zhang, Y. Hao, M. Fang, M. Zhang, Y. Dai, X. Hu, D. Wang, L. Zhong, S. Li, Appl. Phys. Lett. 107, 032902 (2015).

    Google Scholar 

Download references

Acknowledgments

We thank Y. Wang, W.F. Liu, C. Zhou, L. Zhang, Y. Liu, and Z. He for helpful discussion, and gratefully acknowledge the support of the National Basic Research Program of China (Grant No. 2012CB619401), the National Natural Science Foundation of China (Grant Nos. 51571156, 51321003, 51302209, 51431007, and 51320105014), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT13034). J.G. acknowledges the Fundamental Research Funds for the Central Universities for financial support. X.R. acknowledges support from the JSPS Kakenhi Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghui Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Ke, X., Acosta, M. et al. High piezoelectricity by multiphase coexisting point: Barium titanate derivatives. MRS Bulletin 43, 595–599 (2018). https://doi.org/10.1557/mrs.2018.155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.155

Navigation