Skip to main content
Log in

Monolithic magneto-optical oxide thin films for on-chip optical isolation

  • Materials for Nonreciprocal Photonics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Optical isolators, devices that only allow unidirectional light propagation, constitute an essential building block for photonic integrated circuits. For near-infrared communications wavelengths, most current isolator designs rely on the incorporation of magneto-optical (MO) materials to break time-reversal symmetry, such as iron garnets or magnetically substituted semiconductors. MO garnets form the backbone of traditional bulk isolators, but suffer from large lattice and thermal mismatch with common semiconductor substrates, which has significantly impeded their integration into on-chip optical isolators. Materials innovations over the past few years have overcome these barriers and enabled monolithic deposition of MO oxide thin films on silicon using techniques such as pulsed laser deposition and magnetron sputtering. On-chip optical isolator devices with polarization diversity in the telecommunication band have been demonstrated based on these materials. This article reviews the latest technological breakthroughs in MO oxide material growth as well as device design and integration strategies toward practical implementation of on-chip optical isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Z. Yu, S. Fan, Nat. Photonics 3, 91 (2009).

    Google Scholar 

  2. H. Lira, Z. Yu, S. Fan, M. Lipson, Phys. Rev. Lett. 109, 033901 (2012).

    Google Scholar 

  3. Y. Shi, Z. Yu, S. Fan, Nat. Photonics 9, 388 (2015).

    Google Scholar 

  4. D. Karki, V. Stenger, A. Pollick, M. Levy, J. Appl. Phys. 121, 233101 (2017).

    Google Scholar 

  5. M. Levy, IEEE J. Sel. Top. Quantum Electron. 8, 1300 (2002).

    Google Scholar 

  6. C. Zhang, P. Dulal, B. Stadler, D. Hutchings, Sci. Rep. 7, 5820 (2017).

    Google Scholar 

  7. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, A.F. Popkov, J. Opt. Soc. Am. B 22, 240 (2005).

    Google Scholar 

  8. W. Zaets, K. Ando, IEEE Photonics Technol. Lett. 11, 1012 (1999).

    Google Scholar 

  9. J. Montoya, K. Parameswaran, J. Hensley, M. Allen, R. Ram, J. Appl. Phys. 106, 023108 (2009).

    Google Scholar 

  10. L. Tang, S.M. Drezdzon, T. Yoshie, Opt. Express 16, 16202 (2008).

    Google Scholar 

  11. J. Hammer, G. Ozgur, G. Evans, J. Butler, J. Appl. Phys. 100, 103103 (2006).

    Google Scholar 

  12. G. Dionne, G. Allen, P. Haddad, C. Ross, B. Lax, MIT Lincoln Lab. J. 15, 323 (2005).

    Google Scholar 

  13. D. Hutchings, B. Holmes, C. Zhang, P. Dulal, A. Block, S. Sung, N. Seaton, B. Stadler, IEEE Photonics J. 5, 6602512 (2013).

    Google Scholar 

  14. H. Shimizu, Y. Nakano, J. Lightwave Technol. 24, 38 (2006).

    Google Scholar 

  15. W. Van Parys, D. Van Thourhout, R. Baets, B. Dagens, J. Decobert, O. Le Gouezigou, D. Make, R. Vanheertum, L. Lagae, in CLEO (2008), https://www.cleoconference.org/home/home.

  16. T. Shintaku, Appl. Phys. Lett. 73, 1946 (1998).

    Google Scholar 

  17. H. Hemme, H. Dötsch, P. Hertel, Appl. Opt. 29, 2741 (1990).

    Google Scholar 

  18. R. El-Ganainy, P. Kumar, M. Levy, Opt. Lett. 38, 61 (2013).

    Google Scholar 

  19. H. Yokoi, T. Mizumoto, Y. Shoji, Appl. Opt. 42, 6605 (2003).

    Google Scholar 

  20. J. Fujita, M. Levy, R. Osgood, L. Wilkens, H. Dötsch, Appl. Phys. Lett. 76, 2158 (2000).

    Google Scholar 

  21. Y. Shoji, T. Mizumoto, Opt. Express 15, 639 (2007).

    Google Scholar 

  22. N. Kono, K. Kakihara, K. Saitoh, M. Koshiba, Opt. Express 15, 7737 (2007).

    Google Scholar 

  23. H. Zhu, C. Jiang, J. Lightwave Technol. 29, 1647 (2011).

    Google Scholar 

  24. J. Yang, J. Roh, S. Ok, D. Woo, Y. Byun, W. Lee, T. Mizumoto, S. Lee, IEEE Trans. Magn. 41, 3520 (2005).

    Google Scholar 

  25. K. Shui, L. Nie, Y. Zhang, B. Peng, J. Xie, L. Deng, L. Bi, Opt. Express 24, 12856 (2016).

    Google Scholar 

  26. N. Kono, M. Koshiba, Opt. Express 13, 9155 (2005).

    Google Scholar 

  27. T. Boudiar, B. Payet-Gervy, M.-F. Blanc-Mignon, J.-J. Rousseau, M. Le Berre, H. Joisten, J. Magn. Magn. Mater. 284, 77 (2004).

    Google Scholar 

  28. Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, R.M. Osgood Jr., Appl. Phys. Lett. 92, 071117 (2008).

    Google Scholar 

  29. M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, J.E. Bowers, Opt. Express 19, 11740 (2011).

    Google Scholar 

  30. T. Mizumoto, Y. Shoji, R. Takei, Materials 5, 985 (2012).

    Google Scholar 

  31. S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, R. Baets, Opt. Express 20, 1839 (2012).

    Google Scholar 

  32. B. Stadler, T. Mizumoto, IEEE Photonics J. 6, 1 (2014).

    Google Scholar 

  33. P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, J.E. Bowers, J. Lightwave Technol. 35, 1429 (2017).

    Google Scholar 

  34. T.R. Zaman, X. Guo, R.J. Ram, J. Lightwave Technol. 26, 291 (2008).

    Google Scholar 

  35. T. Zaman, X. Guo, R. Ram, Appl. Phys. Lett. 90, 023514 (2007).

    Google Scholar 

  36. K. Baba, F. Takase, M. Miyagi, Opt. Commun. 139, 35 (1997).

    Google Scholar 

  37. H. Amata, F. Royer, F. Choueikani, D. Jamon, F. Parsy, J.-E. Broquin, S. Neveu, J.J. Rousseau, Appl. Phys. Lett. 99, 251108 (2011).

    Google Scholar 

  38. L. Bi, J. Hu, P. Jiang, D. Kim, G. Dionne, L. Kimerling, C. Ross, Nat. Photonics 5, 758 (2011).

    Google Scholar 

  39. L. Bi, “Magneto-Optical Oxide Thin Films and Integrated Nonreciprocal Photonic Devices,” PhD dissertation, Massachusetts Institute of Technology (2011).

  40. T. Goto, M. Onbas¸lı, C. Ross, Opt. Express 20, 28507 (2012).

    Google Scholar 

  41. L. Bi, J. Hu, P. Jiang, H. Kim, D. Kim, M. Onbasli, G. Dionne, C. Ross, Materials 6, 5094 (2013).

    Google Scholar 

  42. L. Bi, J. Hu, G. Dionne, L. Kimerling, C. Ross, in Integrated Optics: Devices, Materials, and Technologies XV (International Society for Optics and Photonics, 2011), vol. 7941, p. 794105.

  43. T. Goto, M. Onbasli, D. Kim, V. Singh, M. Inoue, L. Kimerling, C. Ross, C.A. Ross, Opt. Express 22, 19047 (2014).

    Google Scholar 

  44. M. Onbasli, L. Beran, M. Zahradník, M. Kucˇera, R. Antoš, J. Mistrík, G. Dionne, M. Veis, C. Ross, Sci. Rep. 6, 23640 (2016).

    Google Scholar 

  45. J. Hu, X. Sun, Q. Du, M. Onbasli, C. Ross, Proc. SPIE 9750 (2016), p. 97500W-1.

  46. X. Sun, Q. Du, T. Goto, M. Onbasli, D. Kim, N. Aimon, J. Hu, C. Ross, ACS Photonics 2, 856 (2015).

    Google Scholar 

  47. S. Sung, X. Qi, B. Stadler, Appl. Phys. Lett. 87, 121111 (2005).

    Google Scholar 

  48. S. Sung, X. Qi, B. Stadler, in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), p. CThN5.

  49. P. Hansen, J. Krumme, Thin Solid Films 114, 69 (1984).

    Google Scholar 

  50. M.C. Onbasli, T. Goto, X. Sun, N. Huynh, C.A. Ross, Opt. Express 22 (21), 25183 (2014).

    Google Scholar 

  51. P. Dulal, A. Block, T. Gage, H. Haldren, S. Sung, D. Hutchings, B. Stadler, ACS Photonics 3, 1818 (2016).

    Google Scholar 

  52. T. Yoshimoto, T. Goto, R. Isogai, Y. Nakamura, H. Takagi, C.A. Ross, M. Inoue, Opt. Express 24, 8746 (2016).

    Google Scholar 

  53. A.E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K.K. Chen, R.P.-C. Tern, T.-Y. Liow, IEEE J. Sel. Top. Quantum Electron. 20, 405 (2014).

    Google Scholar 

  54. L. Bi, J. Hu, G.F. Dionne, L. Kimerling, C. Ross, Proc. SPIE 7941 (International Society for Optics and Photonics, 2011), p. 794105.

  55. D. Dai, J. Bauters, J.E. Bowers, Light Sci. Appl. 1, e1 (2012).

    Google Scholar 

  56. E. Ishida, K. Miura, Y. Shoji, H. Yokoi, T. Mizumoto, N. Nishiyama, S. Arai, Opt. Express 25, 452 (2017).

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding support provided by the National Science Foundation under Award No. 1607865.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyang Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Q., Fakhrul, T., Zhang, Y. et al. Monolithic magneto-optical oxide thin films for on-chip optical isolation. MRS Bulletin 43, 413–418 (2018). https://doi.org/10.1557/mrs.2018.127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.127

Navigation