Skip to main content

Advertisement

Log in

Artificial nonreciprocal photonic materials at GHz-to-THz frequencies

  • Materials for Nonreciprocal Photonics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Lorentz reciprocity governs the symmetry with which electromagnetic signals travel in space and time. A reciprocal channel supports signal transport in two directions with the same transmission properties. Nonreciprocal devices do not obey this general symmetry, and therefore enable isolation and circulation, offering fundamental functionalities in modern GHz-to-THz photonic systems. While most nonreciprocal devices to date are based on magneto-optical phenomena, significant interest has been raised by approaches that avoid the use of magnetic materials, instead relying on artificial materials and circuits that mimic magnetically biased ferrites, enabling compact, light, integrated, and significantly cheaper nonreciprocal devices. Here, we review recent progress in and opportunities offered by artificial nonmagnetic materials that break reciprocity, revealing their potential for compact nonreciprocal devices and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. H.B.G. Casimir, Rev. Mod. Phys. 17, 343 (1945).

    Google Scholar 

  2. D. Bharadia, E. McMilin, S. Katti, Comput. Commun. Rev. 43, 375 (2013).

    Google Scholar 

  3. J. Zhou, N. Reiskarimian, J. Diakonikolas, T. Dinc, T. Chen, G. Zussman, H. Krishnaswamy, IEEE Commun. Mag. 55 (4), 142 (2017).

    Google Scholar 

  4. M. Freiser, IEEE Trans. Magn. 4, 152 (1968).

    Google Scholar 

  5. W. Chen, D. Leykam, Y.D. Chong, L. Yang, MRS Bull. 43 (6), 443 (2018).

    Google Scholar 

  6. P. Aleahmad, M. Khajavikhan, D. Christodoulides, P. LiKamWa, Sci. Rep. 7, 2129 (2017).

    Google Scholar 

  7. Y. Shi, Z. Yu, S. Fan, Nat. Photonics 9, 388 (2015).

    Google Scholar 

  8. S. Tanaka, N. Shimimura, K. Ohtake, Proc. IEEE 53, 260 (1965).

    Google Scholar 

  9. T. Kodera, D.L. Sounas, C. Caloz, Appl. Phys. Lett. 99, 031114 (2011).

    Google Scholar 

  10. T. Kodera, D.L. Sounas, C. Caloz, IEEE Trans. Microw. Theory Tech. 61, 1030 (2013).

    Google Scholar 

  11. Z. Wang, Z. Wang, J. Wang, B. Zhang, J. Huangfu, J.D. Joannopoulos, M. Soljačić, L. Ran, Proc. Natl. Acad. Sci. U.S.A. 109, 13194 (2012).

    Google Scholar 

  12. D.L. Sounas, A. Alù, Nat. Photonics 11, 774 (2017).

    Google Scholar 

  13. A.K.A. Kamal, Proc. IRE 48, 1424 (1960).

    Google Scholar 

  14. B.D.O. Anderson, R.W. Newcomb, Proc. IEEE 53, 1674 (1965).

    Google Scholar 

  15. J.L. Wentz, Proc. IEEE 54, 96 (1966).

    Google Scholar 

  16. H.E.A. Brenner, IEEE Trans. Microw. Theory Tech. 15, 301 (1967).

    Google Scholar 

  17. G. Carchon, B. Nanwelaers, IEEE Trans. Microw. Theory Tech. 48, 316 (2000).

    Google Scholar 

  18. L.D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, M. Lipson, Nat. Photonics 8, 701 (2014).

    Google Scholar 

  19. C.R. Doerr, L. Chen, D. Vermeulen, Opt. Express 22, 4493 (2014).

    Google Scholar 

  20. A. Kamal, J. Clarke, M.H. Devoret, Nat. Phys. 7, 311 (2011).

    Google Scholar 

  21. R. Fleury, D.L. Sounas, C.F. Sieck, M.R. Haberman, A. Alù, Science 343, 516 (2014).

    Google Scholar 

  22. Z. Yu, S. Fan, Nat. Photonics 3, 91 (2009).

    Google Scholar 

  23. S. Qin, Q. Xu, Y.E. Wang, IEEE Trans. Microw. Theory Tech. 62, 2260 (2014).

    Google Scholar 

  24. D.L. Sounas, C. Caloz, A. Alù, Nat. Commun. 4, 2407 (2013).

    Google Scholar 

  25. D.L. Sounas, A. Alù, ACS Photonics 1, 198 (2014).

    Google Scholar 

  26. N.A. Estep, D.L. Sounas, J. Soric, A. Alù, Nat. Phys. 10, 923 (2014).

    Google Scholar 

  27. N.A. Estep, D.L. Sounas, A. Alù, IEEE Trans. Microw. Theory Tech. 64, 502 (2016).

    Google Scholar 

  28. J. Kerckhoff, K. Lalumière, B.J. Chapman, A. Blais, K.W. Lehnert, Phys. Rev. Appl. 4, 034002 (2015).

    Google Scholar 

  29. Y. Hadad, D.L. Sounas, A. Alù, Phys. Rev. B Condens. Matter 92, 100304 (2015).

    Google Scholar 

  30. A. Shaltout, A. Kildishev, V. Shalaev, Opt. Mater. Express 5, 2459 (2015).

    Google Scholar 

  31. Y. Hadad, J.C. Soric, A. Alù, Proc. Natl. Acad. Sci. U.S.A. 113, 3471 (2016).

    Google Scholar 

  32. S. Taravati, C. Caloz, IEEE Trans. Antennas Propag. 65, 442 (2017).

    Google Scholar 

  33. L. Zhu, S. Fan, Phys. Rev. B Condens. Matter 90, 220301 (2014).

    Google Scholar 

  34. M. Green, Nano Lett. 12, 5985 (2012).

    Google Scholar 

  35. D. Correas-Serrano, J.S. Gomez-Diaz, D.L. Sounas, Y. Hadad, A. Alvarez-Melcon, A. Alù, IEEE Antennas Wirel. Propag. Lett. 15, 1529 (2015).

    Google Scholar 

  36. C.T. Phare, Y.H.D. Lee, J. Cardenas, M. Lipson, Nat. Photonics 9, 511 (2015).

    Google Scholar 

  37. N. Reiskarimian, H. Krishnaswamy, Nat. Commun. 7, 11217 (2016).

    Google Scholar 

  38. N. Reiskarimian, J. Zhou, H. Krishnaswamy, IEEE J. Solid-State Circuits 52 (5), 1358 (2017).

    Google Scholar 

  39. T. Dinc, M. Tymchenko, A. Nagulu, D. Sounas, A. Alù, H. Krishnaswamy, Nat. Commun. 8, 795 (2017).

    Google Scholar 

  40. T. Dinc, A. Nagulu, H. Krishnaswamy, IEEE J. Solid-State Circuits 52 (12), 3276 (2017).

    Google Scholar 

  41. H. Busignies, M. Dishal, Proc. IRE 37, 478 (1949).

    Google Scholar 

  42. W.R. LePage, C.R. Cahn, J.S. Brown, Trans. Am. Inst. Electr. Eng. Pt. I 72, 63 (1953).

    Google Scholar 

  43. A. Ghaffari, E. Klumperink, M. Soer, B. Nauta, IEEE J. Solid-State Circuits 46, 998 (2011).

    Google Scholar 

  44. N. Reiskarimian, J. Zhou, T.-H. Chuang, H. Krishnaswamy, IEEE Trans. Circuits Syst. II Express Briefs 63 (8), 728 (2016).

    Google Scholar 

  45. A. Nagulu, A. Alù, H. Krishnaswamy, IEEE RFIC Symposium (2018).

  46. D.L. Sounas, A. Alù, Phys. Rev. Lett. 118, 154302 (2017).

    Google Scholar 

  47. A. Kord. D.L. Sounas, A. Alù, Electr. Eng. Syst. Sci. Signal Process. (2017), https://arxiv.org/abs/1709.08133/abs/1709.08133.

  48. L. Lu, J.D. Joannopoulos, M. Soljačić, Nat. Photonics 8, 821 (2014).

    Google Scholar 

  49. S. Raghu, F.D.M. Haldane, Phys. Rev. A At. Mol. Opt. Phys. 78, 033834 (2008).

    Google Scholar 

  50. R. Fleury, A. Khanikaev, A. Alù, Nat. Commun., 7, 11744 (2016).

    Google Scholar 

  51. M. Schmidt, S. Kessler, V. Peano, O. Painter, F. Marquardt, Optica 2, 635 (2015).

    Google Scholar 

  52. V. Peano, C. Brendel, M. Schmidt, F. Marquardt, Phys. Rev. X 5, 031011 (2015).

    Google Scholar 

  53. N. Reiskarimian, M.B. Dastjerdi, J. Zhou, H. Krishnaswamy, in 2017 IEEE International Solid-State Circuits Conference (ISSCC) (2017), pp. 316–317.

Download references

Acknowledgments

We acknowledge support from the DARPA SPAR Program, the US Air Force Office of Scientific Research, and the National Science Foundation EFRI Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Alù.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alù, A., Krishnaswamy, H. Artificial nonreciprocal photonic materials at GHz-to-THz frequencies. MRS Bulletin 43, 436–442 (2018). https://doi.org/10.1557/mrs.2018.126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.126

Navigation