Skip to main content
Log in

Optical nonreciprocal devices for silicon photonics using wafer-bonded magneto-optical garnet materials

  • Materials for Nonreciprocal Photonics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Optical isolators and circulators are important elements in many photonic systems. These nonreciprocal devices are typically made of bulk optical components and are difficult to integrate with other elements of photonic integrated circuits. This article discusses the best performance for waveguide isolators and circulators achieved with heterogeneous bonding. By virtue of the bonding technology, the devices can make use of a large magneto-optical effect provided by a high-quality single-crystalline garnet grown in a separate process on a lattice-matched substrate. In a silicon-on-insulator waveguide, the low refractive index of the buried oxide layer contributes to the large penetration of the optical field into a magneto-optical garnet used as an upper-cladding layer. This enhances the magneto-optical phase shift and contributes greatly to reducing the device footprint and the optical loss. Several versions of silicon waveguide optical isolators and circulators, both based on the magneto-optical phase shift, are demonstrated with an optical isolation ratio of ≥30 dB in a wavelength band of 1550 nm. Furthermore, the isolation wavelength can be effectively tuned over several tens of nanometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. K. Petermann, IEEE J. Sel. Top. Quantum Electron. 1, 480 (1995).

    Google Scholar 

  2. S. Wang, M. Shah, J.D. Crow, J. Appl. Phys. 43, 1861 (1972).

    Google Scholar 

  3. J. Warner, IEEE Trans. Microw. Theory Tech. MTT-21, 769 (1973).

  4. G. Hepner, B. Desormiere, J.P. Castera, Appl. Opt. 14, 1479 (1975).

    Google Scholar 

  5. K. Ando, T. Okoshi, N. Koshizuka, Appl. Phys. Lett. 53, 4 (1988).

    Google Scholar 

  6. T. Mizumoto, Y. Kawaoka, Y. Naito, IEICE Trans. E69, 968 (1986).

  7. R. Wolfe, V.J. Fratello, M. McGlashan-Powell, J. Appl. Phys. 63, 3099 (1988).

    Google Scholar 

  8. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, A.F. Popkov, J. Opt. Soc. Am. B. 22, 240 (2005).

    Google Scholar 

  9. M. Levy, IEEE J. Sel. Top. Quantum Electron. 8, 1300 (2002).

    Google Scholar 

  10. P. Hansen, J.P. Krume, Thin Solid Films 114, 69 (1984).

    Google Scholar 

  11. R. Takei, K. Yoshida, T. Mizumoto, Jpn. J. Appl. Phys. 49, 086204 (2010).

    Google Scholar 

  12. T. Mizumoto, Y. Shoji, R. Takei, Materials 5, 985 (2012).

    Google Scholar 

  13. G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, M. Smit, J. Electrochem. Soc. 153, G1015 (2006).

    Google Scholar 

  14. M.-C. Tien, T. Mizumoto, P. Pintus, H. Krömer, J. Bowers, Opt. Express 19, 11740 (2011).

    Google Scholar 

  15. S. Geller, G.P. Espinosa, P.B. Crandall, J. Appl. Crystallogr. 2, 86 (1969).

    Google Scholar 

  16. R. Hull, “Properties of crystalline silicon,” The Institution of Electrical Engineers, London, UK, pp. 91–153 (1999).

  17. S.-Y. Sung, X. Qi, B.J.H. Stadler, Appl. Phys. Lett. 87, 121111 (2005).

    Google Scholar 

  18. T. Körner, A. Heinrich, A. Weckrle, P. Roocks, B. Stritzker, J. Appl. Phys. 103, 07B337 (2008).

    Google Scholar 

  19. L. Bi, J. Hu, G.F. Dionne, L. Kimerling, C.A. Ross, Proc. SPIE 7941, 794105 (2011).

    Google Scholar 

  20. T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, C. Ross, J. Appl. Phys. 113, 17A939 (2013).

    Google Scholar 

  21. A.D. Block, P. Dulal, B.J.H. Stadler, N.C.A. Seaton, IEEE Photonics J. 6, 0600308 (2014).

    Google Scholar 

  22. Y. Shoji, M. Itoh, Y. Shirato, T. Mizumoto, Opt. Express 20, 18440 (2012).

    Google Scholar 

  23. S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, R. Baets, Opt. Express 20, 1839 (2012).

    Google Scholar 

  24. Y. Shoji, T. Mizumoto, H. Yokoi, I.W. Hsieh, R.M. Osgood Jr., Appl. Phys. Lett. 92, 071117 (2008).

    Google Scholar 

  25. Y. Shoji, T. Mizumoto, Sci. Technol. Adv. Mater. 15, 014602 (2014).

    Google Scholar 

  26. F. Auracher, H.H. Witte, Opt. Commun. 13, 435 (1975).

    Google Scholar 

  27. K. Mitsuya, Y. Shoji, T. Mizumoto, IEEE Photonics Technol. Lett. 25, 721 (2013).

    Google Scholar 

  28. Y. Shoji, T. Mizumoto, Opt. Express 15, 639 (2007).

    Google Scholar 

  29. Y. Shoji, Y. Shirato, T. Mizumoto, Jpn. J. Appl. Phys. 53, 022202 (2014).

    Google Scholar 

  30. K. Furuya, T. Nemoto, K. Kato, Y. Shoji, T. Mizumoto, J. Lightwave Technol. 34, 1699 (2016).

    Google Scholar 

  31. D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, J.E. Bowers, IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).

    Google Scholar 

  32. D. Huang, P. Pintus, Y. Shoji, P. Morton, T. Mizumoto, J.E. Bowers, Opt. Lett. 42, 4901 (2017).

    Google Scholar 

  33. N. Kono, K. Kakihara, K. Saitoh, M. Koshiba, Opt. Express 15, 7737 (2007).

    Google Scholar 

  34. D. Jalas, A. Petrov, M. Krause, J. Hampe, M. Eich, Opt. Lett. 35, 3438 (2010).

    Google Scholar 

  35. P. Pintus, M.-C. Tien, J.E. Bowers, IEEE Photonics Technol. Lett. 23, 1670 (2011).

    Google Scholar 

  36. P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, J.E. Bowers, J. Lightwave Technol. 35, 1429 (2017).

    Google Scholar 

  37. P. Pintus, F. Di Pasquale, J.E. Bowers, Opt. Express 21, 5041 (2013).

    Google Scholar 

  38. D. Jalas, A.Y. Petrov, M. Eich, Opt. Lett. 39, 1425 (2014).

    Google Scholar 

  39. D. Huang, P. Pintus, C. Zhang, P. Morton, Y. Shoji, T. Mizumoto, J.E. Bowers, Optica 4, 23 (2017).

    Google Scholar 

  40. S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, R. Baets, IEEE Photonics J. 5, 6601108 (2013).

    Google Scholar 

  41. S. Ghosh, S. Keyvaninia, W. Van Roy, T. Mizumoto, G. Roelkens, R. Baets, Opt. Lett. 38, 965 (2013).

    Google Scholar 

  42. X. Sun, Q. Du, T. Goto, M. Onbasli, D. Kim, N. Aimon, J. Hu, C. Ross, ACS Photonics 2, 7 (2015).

    Google Scholar 

  43. Y. Shoji, K. Miura, T. Mizumoto, J. Opt. 18, 1 (2015).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the JST Core Research for Evolutional Science and Technology (CREST) No. JPMJCR15N6 and by the DARPA IPHOD contract and Air Force Small Business Innovation Research (SBIR) funding through Morton Photonics (FA8650–16-C-1758).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Mizumoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizumoto, T., Baets, R. & Bowers, J.E. Optical nonreciprocal devices for silicon photonics using wafer-bonded magneto-optical garnet materials. MRS Bulletin 43, 419–424 (2018). https://doi.org/10.1557/mrs.2018.125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.125

Navigation