Skip to main content
Log in

Sputter-deposited magneto-optical garnet for all-mode (transverse electric/transverse magnetic) Faraday rotators

  • Materials for Nonreciprocal Photonics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Faraday rotators in optical isolators, typically composed of iron garnets, are photonic analogues of electrical diodes in that they do not allow reciprocal transmission of light. Isolators are especially important for blocking back-reflected light from reaching source lasers, as such feedback gives rise to unwanted noise and instabilities. In commonly implemented photonic integrated circuits (PICs), isolation is the only critical function that cannot yet be achieved by direct integration. While several techniques have been explored for integrating high-gyrotropy garnets into silicon-on-insulator PICs, this article focuses on sputter deposition, which is the most up-scalable process. High-gyrotropy Ce-doped yttrium iron garnet on nongarnet substrates can be made by sputter deposition with the use of garnet seed layers. Because these seed layers can compromise device performance, seed layer-free terbium iron garnet (TIG) has also recently been developed. Careful doping of TIG can produce Faraday rotations with opposite chiralities, which enable new device designs. Most optical isolator designs involve two-dimensional transverse magnetic-mode structures, such as interferometers or ring resonators, which employ nonreciprocal phase shift. One-dimensional Faraday rotation waveguides with quasi-phase matching have been shown to enable direct integration of isolators for all modes, including the transverse electric mode of lasers currently available for fully integrated PICs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. http://www.thorlabs.com/Optics/Isolators/Optics/Isolators.

  2. B.J.H. Stadler, T. Mizumoto, IEEE Photonics J. 6, 0600215 (2014).

    Google Scholar 

  3. C. Zhang, P. Dulal, B.J.H. Stadler, D.C. Hutchings, Sci. Rep. 7 (5820), 1 (2017).

    Google Scholar 

  4. Y. Shoji, Y. Shirato, T. Mizumoto, Jpn. J. Appl. Phys. 53, 022202 (2014).

    Google Scholar 

  5. S. Ghosh, S. Keyvaninia, Y. Shoji, W. Van Roy, T. Mizumoto, G. Roelkens, and R.G. Baets, IEEE Photonics Technol. Lett. 24, 1653 (2012).

    Google Scholar 

  6. L. Bi, J. Hu, P. Jiang, D.H. Kim, G.F. Dionne, L.C. Kimerling, C.A. Ross, Nat. Photonics 5, 758 (2011).

    Google Scholar 

  7. M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, J.E. Bowers, Opt. Express 19, 11740 (2011).

    Google Scholar 

  8. P. Pintus, F. Di Pasquale, J.E. Bowers, Opt. Lett. 36, 4599 (2011).

    Google Scholar 

  9. H. Shimizu, Y. Nakano, J. Lightwave Technol. 24, 38 (2006).

    Google Scholar 

  10. D.C. Hutchings, B.M. Holmes, IEEE Photonics J. 3, 450 (2011).

    Google Scholar 

  11. D.C. Hutchings, J. Phys. D Appl. Phys. 36, 2222 (2003).

    Google Scholar 

  12. P.K. Tien, R.J. Martin, R. Wolfe, R.C.L. Craw, S.L. Blank, Appl. Phys. Lett. 21, 394 (1972).

    Google Scholar 

  13. L.J. Cruz-Rivera, S.-Y. Sung, J. Cassada, M.R. Marrero-Cruz, B.J.H. Stadler, Mater. Res. Soc. Symp. Proc. 722, R.B. Wehrspohn, R. März, S. Noda, C. Soukoulis, Eds. (Materials Research Society, Warrendale, PA, 2002), p. 262.

  14. M. Abe, M. Gomi, J. Magn. Magn. Mater. 84, 222 (1990).

    Google Scholar 

  15. S.-Y. Sung, X. Qi, B.J.H. Stadler, Appl. Phys. Lett. 87, 121111 (2005).

    Google Scholar 

  16. S.-Y. Sung, A. Sharma, A. Block, K. Keuhn, B.J.H. Stadler, J. Appl. Phys. 109, 07B738 (2011).

    Google Scholar 

  17. P. Dulal, A.D. Block, T.E. Gage, H.A. Haldren, S.-Y. Sung, D.C. Hutchings, B.J.H. Stadler, ACS Photonics 3, 1818 (2016).

    Google Scholar 

  18. Y. Shoji, T. Mizumoto, H. Yokoi, I.W. Hsieh, R.M. Osgood, Appl. Phys. Lett. 92, 071117 (2008).

    Google Scholar 

  19. A.D. Block, P. Dulal, B.J.H. Stadler, N.C. Seaton, IEEE Photonics J. 6, 0600308 (2014).

    Google Scholar 

  20. T.E. Gage, P. Dulal, P.A. Solheid, D.J. Flannigan, B.J.H. Stadler, Mater. Res. Lett. 5 (6), 379 (2017).

    Google Scholar 

  21. P. Dulal, T.E. Gage, A.D. Block, E. Cofell, D.C. Hutchings, B.J.H. Stadler, 2016 IEEE Photonics Conference (2016), p. 773.

  22. X.Y. Sun, Q. Du, T. Goto, M.C. Onbasli, D.H. Kim, N.M. Aimon, J. Hu, C.A. Ross, ACS Photonics 2, 856 (2015).

    Google Scholar 

  23. D.C. Hutchings, B.M. Holmes, C. Zhang, P. Dulal, A.D. Block, S.-Y. Sung, N.C.A. Seaton, B.J.H. Stadler, IEEE Photonics J. 5, 6602512 (2013).

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the collaborators whose work was reviewed in this article, including C. Zhang, P. Dulal, T. Gage, B. Holmes, D. Flannigan, N. Seaton, A. Block, H. Haldren, S.-Y Sung, and P. Solheid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bethanie J. H. Stadler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stadler, B.J.H., Hutchings, D.C. Sputter-deposited magneto-optical garnet for all-mode (transverse electric/transverse magnetic) Faraday rotators. MRS Bulletin 43, 430–435 (2018). https://doi.org/10.1557/mrs.2018.121

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.121

Navigation