Skip to main content
Log in

Materials for heat-assisted magnetic recording heads

  • Materials for Heat-Assisted Magnetic Recording
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Heat-assisted magnetic recording (HAMR) is the next-generation technology that is required to deliver areal densities in excess of 2 terabit/in2 for high-capacity, low-cost hard drives.The recording process relies on spatially and temporally localized heating of the media surface to lower its coercivity during the magnetic writing process. This scheme drives substantial changes to the recording head write element architecture, combining the conventional electromagnet structure with integrated optical light delivery layers, focusing optics, and plasmonic nanostructures to generate subwavelength optical spots. Power losses associated with the strong optical fields required for heating the media can cause local temperatures in excess of 400°C at the recording head surface. Coupled with high pressures, an oxidative/corrosive air-bearing environment, and a sub-3 nm head-media spacing, this introduces new challenges for the functional materials in recording heads required to balance performance and long-term reliability demands. Here, we briefly review specific challenges associated with HAMR heads, highlighting the major requirements, failure modes, and needed innovations for the near-field transducer and optical-waveguide subsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. W.A. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X.M. Yang, X. Zhu, N.J. Gokemeijer, Y.T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, E.C. Gage, Nat. Photonics 3, 220 (2009).

    Google Scholar 

  2. J. Gosciniak, M. Mooney, M. Gubbins, B. Corbett, Nanophotonics 4 (7), 503 (2015).

    Google Scholar 

  3. U. Boettcher, H. Li, R.A. de Callafon, F.E. Talke, IEEE Trans. Magn. 47 (7), 1823 (2011).

    Google Scholar 

  4. D.G. Baranov, D.A. Zuev, S.I. Lepeshov, O.V. Kotov, A.E. Krasnok, A.B. Evlyukhin, B.N. Chichkov, Optica 4, 814 (2017).

    Google Scholar 

  5. S. Bruynooghe, N. Schmidt, M. Sundermann, H.W. Becker, S. Spinzig, Opt. Inter. Coatings 2010, paper ThA9, https://www.osapublishing.org/conference.cfm?meetingid=38&yr=2010.

  6. M.D. Arnold, M.G. Blaber, Opt. Express 17, 3835 (2009).

    Google Scholar 

  7. S. Link, M.A. El-Sayed, J. Phys. Chem. B 103 (40), 8410 (1999).

    Google Scholar 

  8. S.L. Westcott, J.B. Jackson, C. Radloff, N.J. Halas, Phys. Rev. B Condens. Matter 66, 155431 (2002).

    Google Scholar 

  9. H.R. Eragamreddy, U. Guler, K. Chaudhuri, A. Dutta, A.V. Kildishev, V.M. Shalaev, A. Boltasseva, in Conf. Lasers Electro-Optics (Optical Society of America, 2017), p. FTu4H.7.

  10. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002).

    Google Scholar 

  11. B. Foerster, A. Joplin, K. Kaefer, S. Celiksoy, S. Link, C. Sönnichsen, ACS Nano 11 (3), 2886 (2017).

    Google Scholar 

  12. M. Kuttge, H.J. Lezec, H.A. Atwater, A. Polman, Appl. Phys. Lett. 93, 113110 (2008).

    Google Scholar 

  13. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998).

  14. P.B. Johnson, R.W. Christy, Phys. Rev. B Condens. Matter 6, 4370 (1972).

    Google Scholar 

  15. J.H. Weaver, H.P.R. Frederikse, Optical Properties of Selected Elements, 82nd ed. (CRC Press, Boca Raton, FL, 2001).

  16. A. Wu, Y. Kubota, T. Klemmer, T. Rausch, C. Peng, Y. Peng, D. Karns, X. Zhu, Y. Ding, E. Chang, Y. Zhao, H. Zhou, K. Gao, J.-U. Thiele, M. Seigler, G. Ju, E. Gage, IEEE Trans. Magn. 49 (2), 779 (2013).

    Google Scholar 

  17. A. Kossoy, D. Simakov, S. Olafsson, K. Leosson, Thin Solid Films 536, 50 (2013).

    Google Scholar 

  18. J. Dalla Torre, G.H. Gilmer, D.L. Windt, R. Kalyanaraman, F.H. Baumann, P.L. O’Sullivan, J. Sapjeta, T. Dias de la Rubia, M. Djafari Rouhani, J. Appl. Phys. 94, 263 (2003).

    Google Scholar 

  19. T. Karabacak, G.-C. Wang, T.-M. Lu, J. Vac. Sci. Technol. A 22, 1778 (2004).

    Google Scholar 

  20. D. Gupta, Science 11, 7 (2003).

    Google Scholar 

  21. S. Kilgore, C. Gaw, H. Henry, D. Hill, D. Schroder, “Electromigration of Electroplated Gold Interconnects,” Mater. Res. Soc. Symp. Proc. 863, P.R. Besser, A.J. McKerrow, F. Iacopi, C.P. Wong, J.J. Vlassak, Eds. (Materials Research Society, Warrendale, PA, 2005), p. B8.30.

  22. Q. Huang, C. Lilley, R. Divan, M. Bode, IEEE Trans. Nanotechnol. 7 (6), 688 (2008).

    Google Scholar 

  23. A. Taylor, A. Siddiquee, J. Chon, ACS Nano 8, 12071 (2014).

    Google Scholar 

  24. H. Im, S.-H. Oh, Small 10, 680 (2014).

    Google Scholar 

  25. F.A. Nichols, W.W. Mullins, J. Appl. Phys. 36, 1826 (1965).

    Google Scholar 

  26. S. Karim, M.E. Toimil-Molares, A.G. Balogh, W. Ensinger, T.W. Cornelius, E.U. Khan, R. Neumann, Nanotechnology 17, 5954 (2006).

    Google Scholar 

  27. S. Karim, M.E. Toimil-Molares, W. Ensinger, A.G. Balogh, T.W. Cornelius, E.U. Khan, R. Neumann, J. Phys. D Appl. Phys. 40, 3767 (2007).

    Google Scholar 

  28. K. Hirata, R. Hosoi, K. Kawamori, T. Roppongi, “Plasmon Generator and Thermally-Assisted Magnetic Recording Head Having the Same,” US Patent 8,964,514 (August 7, 2012).

  29. R. Ji, B. Xu, Z. Cen, J.F. Ying, Y.T. Toh, J. Appl. Phys. 117, 17A918 (2015).

    Google Scholar 

  30. H. Aouani, J. Wenger, D. Gerard, H. Rigneault, E. Devaux, T.W. Ebbesen, F. Mahdavi, T. Xu, S. Blair, ACS Nano 3, 2043 (2009).

    Google Scholar 

  31. T. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P.J. Schuck, A.P. Alivisatos, S.R. Leone, ACS Nano 6, 5702 (2012).

    Google Scholar 

  32. M. Jeong, J. Freedman, H. Liang, C.-M. Chow, V. Sokalski, J.A. Bain, J. Malen, Phys. Rev. Appl. 5, 014009 (2016).

    Google Scholar 

  33. M.G. Blaber, M.D. Arnold, M.J. Ford, J. Phys. Condens. Matter 22 (14), 143201 (2011).

    Google Scholar 

  34. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Laser Photon. Rev. 4, 795 (2010).

    Google Scholar 

  35. G.V. Naik, V.M. Shalaev, A. Boltasseva, Adv. Mater. 25, 3264 (2013).

    Google Scholar 

  36. G.V. Naik, J. Kim, A. Boltasseva, Opt. Mater. Express 1, 1090 (2011).

    Google Scholar 

  37. U. Guler, A. Boltasseva, V. Shalaev, Science 344, 263 (2014).

    Google Scholar 

  38. T. Rausch, A.S. Chu, P.-L. Lu, S. Puranam, D. Nagulapally, T. Lammers, J.W. Dykes, E.C. Gage, IEEE Trans. Magn. 51 (4), 3000405 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Kautzky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kautzky, M.C., Blaber, M.G. Materials for heat-assisted magnetic recording heads. MRS Bulletin 43, 100–105 (2018). https://doi.org/10.1557/mrs.2018.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.1

Navigation