Skip to main content

Advertisement

Log in

New materials for high-energy-resolution x-ray optics

  • Next-Generation Materials for Synchrotron Radiation
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The use of crystals other than silicon for x-ray optics is becoming more common for many challenging experiments such as resonant inelastic x-ray scattering and nuclear resonant scattering. As more—and more specialized—spectrometers become available at many synchrotron radiation facilities, interest in pushing the limits of experimental energy resolution has increased. The potentially large improvements in resolution and efficiency that nonsilicon optics offer are beginning to be realized. This article covers the background and state of the art for nonsilicon crystal optics with a focus on a resolution of 10 meV or better, concentrating on compounds that form trigonal crystals, including sapphire, quartz, and lithium niobate, rather than the more conventional cubic materials, including silicon, diamond, and germanium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. W. Schülke, Electron Dynamics by Inelastic X-Ray Scattering (Oxford University Press, New York, 2007).

    Google Scholar 

  2. L.J.P. Ament, M. van Veenendaal, T. Devereaux, J. Hill, J. van den Brink, Rev. Mod. Phys. 83, 705 (2011).

    Google Scholar 

  3. E. Gerdau, H. DeWaard, Eds., Hyperfine Interact. 123–124, 3–879 (1999).

  4. J.P. Sutter, A.Q.R. Baron, T. Ishikawa, H. Yamazaki, J. Phys. Chem. Solids 66, 2306 (2005).

    Google Scholar 

  5. H. Yavaş, E. Ercan Alp, H. Sinn, A. Alataş, A.H. Said, Y. Shvyd’ko, T. Toellner, R. Khachatryan, S.J.L. Billinge, M.Z. Hasan, W. Sturhahn, Nucl. Instrum. Methods Phys. Res. A 582, 149 (2007).

    Google Scholar 

  6. T. Gog, D.M. Casa, A.H. Said, M.H. Upton, J. Kim, I. Kuzmenko, X. Huang, R. Khachatryan, J. Synchrotron Radiat. 20, 74 (2013).

    Google Scholar 

  7. J.P. Sutter, A.Q.R. Baron, D. Miwa, Y. Nishino, K. Tamasaku, T. Ishikawa J. Synchrotron Radiat. 13, 278 (2006).

  8. Y.V. Shvyd’ko, E. Gerdau, J. Jäschke, O. Leupold, M. Lucht, H.D. Rüter, Phys. Rev. B Condens. Matter 57, 4968 (1998).

    Google Scholar 

  9. A. Authier, Dynamical Theory of X-Ray Diffraction ( Oxford University Press, New York, 2004).

  10. S. Huotari, G. Vankó, F. Albergamo, C. Ponchut, H. Graafsma, C. Henriquet, R. Verbeni, G. Monaco, J. Synchrotron Radiat. 12, 467 (2005).

    Google Scholar 

  11. H.-C. Wille, R.P. Hermann, I. Sergueev, U. Pelzer, A. Möchel, T. Claudio, J. Perßon, R. Rüffer, A. Said, Y.V. Shvyd’ko, Europhys. Lett. 91, 62001 (2010).

    Google Scholar 

  12. I. Sergueev, H.-C. Wille, R.P. Hermann, D. Bessas, Y.V. Shvyd’ko, M. Zają c, R. Rüffer, J. Synchrotron Radiat. 18, 802 (2011).

    Google Scholar 

  13. Y. Shvyd’ko, S. Stoupin, D. Shu, S.P. Collins, K. Mundboth, J. Sutter, M. Tolkiehn, Nat. Commun. 5, 4219 (2014).

    Google Scholar 

  14. A.Q.R. Baron, in Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications, E.J. Jaeschke, S. Khan, J.R. Schneider, J.B. Hastings, Eds. (Springer, Cham, Switzerland, 2016), doi:10.1007/978-3-319-04507-8_41-1.

  15. R. Verbeni, M. Kocsis, S. Huotari, M. Krisch, G. Monaco, F. Sette, G. Vanko, J. Phys. Chem. Solids 66, 2299 (2005).

    Google Scholar 

  16. D. Ketenoglu, M. Harder, K. Klementiev, M. Upton, M. Taherkhani, M. Spiwek, F.-U. Dill, H.-C. Wille, H. Yavaş J. Synchrotron Radiat. 22, 961 (2015).

  17. M.G. Honnicke, X. Huang, J.W. Keister, C.N. Kodituwakku, Y.Q. Cai, J. Synchrotron Radiat. 17, 352 (2010).

    Google Scholar 

  18. Y. Shvyd’ko, S. Stoupin, K. Mundboth, J. Kim, Phys. Rev. A 87, 43835 (2013).

    Google Scholar 

  19. J. Kim, X. Shi, D. Casa, J. Qian, X. Huang, T. Gog, J. Synchrotron Radiat. 23, 880 (2016).

    Google Scholar 

  20. J.C. Brice, Rev. Mod. Phys. 57, 105 (1985).

    Google Scholar 

  21. G.R. Johnson, J.W. Foise, Encycl. Appl. Phys. 15, 365 (1996).

    Google Scholar 

  22. J.P. Sutter, H. Yavaş Phys. Instrum. Detect. (2017), https://arxiv.org/abs/1612.07049.

  23. T. Ao, E.C. Harding, J.E. Bailey, G. Loisel, S. Patel, D.B. Sinars, L.P. Mix, D.F. Wenger, J. Quant. Spectrosc. Radiat. Transf. 144, 92 (2014).

    Google Scholar 

  24. T. Gog, T. Harasimowicz, B.N. Dev, G. Materlik, Europhys. Lett. 25, 253 (1994).

    Google Scholar 

  25. Y.V. Shvyd’ko, J.P. Hill, C.A. Burns, D.S. Coburn, B. Brajuskovic, D. Casa, K. Goetze, T. Gog, R. Khachatryan, J.-H. Kim, C.N. Kodituwakku, M. Ramanathan, T. Roberts, A. Said, H. Sinn, D. Shu, S. Stoupin, M. Upton, M. Wieczorek, H. Yavas, J. Electron. Spectrosc. Relat. Phenom. 188, 140 (2013).

    Google Scholar 

  26. D.E. Gray, American Institute of Physics Handbook (McGraw-Hill, New York, 1957).

  27. M. Lucht, M. Lerche, H.-C. Wille, Yu.V. Shvyd’ko, H.D. Rüter, E. Gerdau P. Becker, J. Appl. Crystallogr. 36, 1075 (2003).

    Google Scholar 

  28. B. Etschmann, N. Ishizawa, Powder Diffr. 16, 81 (2001).

    Google Scholar 

  29. Y. Shvyd’ko, X-Ray Optics (Springer Berlin Heidelberg, Berlin, Germany, 2004).

  30. Y.V. Shvyd’ko, E. Gerdau, Hyperfine Interact. 123–124, 741 (1999).

  31. H.-C. Wille, Y.V. Shvyd’ko, E.E. Alp, H.D. Rüter, O. Leupold, I. Sergueev, R. Rüffer, A. Barla, J.P. Sanchez, Europhys. Lett. 74, 170 (2006).

    Google Scholar 

  32. P. Alexeev, V. Asadchikov, D. Bessas, A. Butashin, A. Deryabin, F.-U. Dill, A. Ehnes, M. Herlitschke, R.P. Hermann, A. Jafari, I. Prokhorov, B. Roshchin, R. Röhlsberger, K. Schlage, I. Sergueev, A. Siemens, H.-C. Wille, Hyperfine Interact. 237, 59 (2016).

    Google Scholar 

  33. W.M. Chen, P.J. McNally, Y.V. Shvyd’ko, T. Tuomi, M. Lerche, A.N. Danilewsky, J. Kanatharana, D. Lowney, M. O’Hare, L. Knuuttila, J. Riikonen, R. Rantamaki, Phys. Status Solidi A 186, 365 (2001).

    Google Scholar 

  34. V.E. Asadchikov, A.V. Butashin, A.V. Buzmakov, A.N. Deryabin, V.M. Kanevsky, I.A. Prokhorov, B.S. Roshchin, Y.O. Volkov, D.A. Zolotov, A. Jafari, P. Alexeev, A. Cecilia, T. Baumbach, D. Bessas, A.N. Danilewsky, I. Sergueev, H.-C. Wille, R.P. Hermann, Cryst. Res. Technol. 51, 290 (2016).

    Google Scholar 

  35. A. Jafari, I. Sergueev, D. Bessas, B. Klobes, B.S. Roschin, V.E. Asadchikov, P. Alexeev, J. Härtwig, A.I. Chumakov, H.-C. Wille, R.P. Hermann, J. Appl. Phys. 121, 44901 (2017).

    Google Scholar 

Download references

Acknowledgements

T.G. acknowledges X. Huang of the Advanced Photon Source (APS) for collecting and interpreting white-beam topography images. J.P.S. acknowledges S. Stoupin (formerly APS, now Cornell), N. Pereira (Ecopulse) for useful discussions, and D. Casa (APS) for advice. This research used resources of the APS, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02–06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Yavaş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavaş, H., Sutter, J.P., Gog, T. et al. New materials for high-energy-resolution x-ray optics. MRS Bulletin 42, 424–429 (2017). https://doi.org/10.1557/mrs.2017.94

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.94

Navigation