Skip to main content
Log in

Cell sheet engineering for integrating functional tissue in vivo: Successes and challenges

  • System Integration of Functionalized Natural Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

“Bottom-up” assembly of fully functional cell-based materials has enormous potential for replicating endogenous tissues. Currently, most tissue-engineering strategies are based on incorporating dissociated cells into an artificial three-dimensional matrix of supportive structural elements that direct cellular migration, proliferation, and organization. The matrix provides “top-down” guidance cues that impose assembly directions on the cells; however, the matrix also competes for space and limits fully functional, cell-dense tissues. This article focuses on bottom-up fabrication of functional tissue by cell sheet engineering. Cell sheet engineering is based on the sequential stacking and adhesion of confluent and organized cell monolayers from two-dimensional cell culture without the need for artifical scaffolds or structural intermediates. The resulting functional cellular monolayers (either individually or as stacked sheets) can then be directly implanted into living systems. Clinical successes are highlighted as well as attempts to overcome the vascularization limit often observed in engineered tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. L.R. Chick, Ann. Plast. Surg. 21, 358 (1988).

    Google Scholar 

  2. R.G. Harrison, J. Exp. Zool. 9, 787 (1910).

    Google Scholar 

  3. F. Pampaloni, E.G. Reynaud, E.H.K. Stelzer, Nat. Rev. Mol. Cell Biol. 8, 839 (2007).

    Google Scholar 

  4. T. Elsdale, J. Bard, J. Cell Biol. 54, 626 (1972).

    Google Scholar 

  5. M. Delcommenne, C.H. Streuli, J. Biol. Chem. 270, 26794 (1995).

    Google Scholar 

  6. S. Knowlton, Y.K. Cho, X.J. Li, A. Khademhosseini, S. Tasoglu, Biomater. Sci. UK 4, 768 (2016).

    Google Scholar 

  7. S. Heydrick, E. Roberts, J. Kim, S. Emani, J.Y. Wong, Curr. Opin. Biotechnol. 40, 119 (2016).

    Google Scholar 

  8. B. Wei, M.J. Dai, P. Yin, Nature 485, 623 (2012).

    Google Scholar 

  9. P. Carmeliet, R.K. Jain, Nat. Rev. Drug Discov. 10, 417 (2011).

    Google Scholar 

  10. T. Okano, N. Yamada, H. Sakai, Y. Sakurai, J. Biomed. Mater. Res. 27, 1243 (1993).

    Google Scholar 

  11. H.L. Huang, H.W. Hsing, T.C. Lai, Y.W. Chen, T.R. Lee, H.T. Chan, P.C. Lyu, C.L. Wu, Y.C. Lu, S.T. Lin, C.W. Lin, C.H. Lai, H.T. Chang, H.C. Chou, H.L. Chan, J. Biomed. Sci. 17, 11 (2010).

    Google Scholar 

  12. T. Sumide, K. Nishida, M. Yamato, T. Ide, Y. Hayashida, K. Watanabe, J. Yang, C. Kohno, A. Kikuchi, N. Maeda, H. Watanabe, T. Okano, Y. Tano, FASEB J. 20, 392 (2006).

    Google Scholar 

  13. M. Yamato, M. Okuhara, F. Karikusa, A. Kikuchi, Y. Sakurai, T. Okano, J. Biomed. Mater. Res. 44, 44 (1999).

    Google Scholar 

  14. D.E. Ingber, L. Dike, L. Hansen, S. Karp, H. Liley, A. Maniotis, H. McNamee, D. Mooney, G. Plopper, J. Sims, N. Wang, Int. Rev. Cytol. 150, 173 (1994).

    Google Scholar 

  15. M. Hirose, O.H. Kwon, M. Yamato, A. Kikuchi, T. Okano, Biomacromolecules 1, 377 (2000).

    Google Scholar 

  16. A. Ito, M. Hayashida, H. Honda, K.I. Hata, H. Kagami, M. Ueda, T. Kobayashi, Tissue Eng. 10, 873 (2004).

    Google Scholar 

  17. W.S. Yeo, M. Mrksich, Langmuir 22, 10816 (2006).

    Google Scholar 

  18. Y. Hong, M.F. Yu, W.J. Weng, K. Cheng, H.M. Wang, J. Lin, Biomaterials 34, 11 (2013).

    Google Scholar 

  19. O.O. Akintewe, S.J. DuPont, K.K. Elineni, M.C. Cross, R.G. Toomey, N.D. Gallant, Acta Biomater. 11, 96 (2015).

    Google Scholar 

  20. M. Yamato, C. Konno, A. Kushida, M. Hirose, M. Utsumi, A. Kikuchi, T. Okano, Biomaterials 21, 981 (2000).

    Google Scholar 

  21. T. Iwata, K. Washio, T. Yoshida, I. Ishikawa, T. Ando, M. Yamato, T. Okano, J. Tissue Eng. Regen. Med. 9, 343 (2015).

    Google Scholar 

  22. K. Nishida, M. Yamato, Y. Hayashida, K. Watanabe, K. Yamamoto, E. Adachi, S. Nagai, A. Kikuchi, N. Maeda, H. Watanabe, T. Okano, Y. Tano, N. Engl. J. Med. 351, 1187 (2004).

    Google Scholar 

  23. C. Burillon, L. Huot, V. Justin, S. Nataf, F. Chapuis, E. Decullier, O. Damour, Invest. Ophthalmol. Vis. Sci. 53, 1325 (2012).

    Google Scholar 

  24. Y. Sawa, S. Miyagawa, T. Sakaguchi, T. Fujita, A. Matsuyama, A. Saito, T. Shimizu, T. Okano, Surg. Today 42, 181 (2012).

    Google Scholar 

  25. T. Ohki, M. Yamato, D. Murakami, R. Takagi, J. Yang, H. Namiki, T. Okano, K. Takasaki, Gut 55, 1704 (2006).

    Google Scholar 

  26. http://www.cellseed.com/document_en.html?year=2016&id=20160817-c1ba5b34.

  27. S. Wakitani, K. Imoto, T. Yamamoto, M. Saito, N. Murata, M. Yoneda, Osteoarthr. Cartil. 10, 199 (2002).

    Google Scholar 

  28. N. Kaneshiro, M. Sato, M. Ishihara, G. Mitani, H. Sakai, J. Mochida, Biochem. Biophys. Res. Commun. 349, 723 (2006).

    Google Scholar 

  29. T. Shimizu, H. Sekine, Y. Isoi, M. Yamato, A. Kikuchi, T. Okano, Tissue Eng. 12, 499 (2006).

    Google Scholar 

  30. K. Ohashi, T. Yokoyama, M. Yamato, H. Kuge, H. Kanehiro, M. Tsutsumi, T. Amanuma, H. Iwata, J. Yang, T. Okano, Y. Nakajima, Nat. Med. 13, 880 (2007).

    Google Scholar 

  31. T. Sasagawa, T. Shimizu, S. Sekiya, Y. Haraguchi, M. Yamato, Y. Sawa, T. Okano, Biomaterials 31, 1646 (2010).

    Google Scholar 

  32. T. Shimizu, H. Sekine, J. Yang, Y. Isoi, M. Yamato, A. Kikuchi, E. Kobayashi, T. Okano, FASEB J. 20, 708 (2006).

    Google Scholar 

  33. K. Sakaguchi, T. Shimizu, S. Horaguchi, H. Sekine, M. Yamato, M. Umezu, T. Okano, Sci. Rep. UK 3, 1316 (2013).

    Google Scholar 

Download references

Acknowledgment

N.G. and R.T. gratefully acknowledge partial support from NSF-CMMI 1538727.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Baksh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baksh, N., Gallant, N.D. & Toomey, R.G. Cell sheet engineering for integrating functional tissue in vivo: Successes and challenges. MRS Bulletin 42, 350–355 (2017). https://doi.org/10.1557/mrs.2017.91

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.91

Navigation