Skip to main content

Advertisement

Log in

Sustainable products from bio-oils

  • System Integration of Functionalized Natural Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The continued use of finite fossil fuel resources has shifted thinking toward a potential future bioeconomy, and the field of polymer science will play a critical role in valorization of bio-derived materials. Interest in renewable resources is constantly increasing, backed up by new environmental regulations and economic considerations. Biomass is abundant and diverse, and polymeric materials based on renewable feedstocks represent a viable alternative to fossil resources. Bio-oil—a dark brown, free-flowing organic liquid mixture—is a product of fast pyrolysis or liquefaction of biomass. Bio-oil generally comprises a large amount of water and hundreds of organic chemical compounds that can be further broken down into families of reactive structures, capable of producing new synthetic pathways to design and synthesize high-performance biopolymers and bioresins using lignocellulosic biomass. These new polymeric materials have demonstrated a unique combination of thermal resistance and low cost intrinsic of the biomass utilized, as well as superior mechanical performance of polymeric resins sufficient to compete with high-performance structural resins and coating materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. US Department of Energy, US Department of Agriculture, “Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply” (April 2005), https://www1.eere.energy.gov/bioenergy/pdfs/final_billionton_vision_report2.pdf.

  2. C. Li, X. Zhao, A. Wang, G.W. Huber, T. Zhang, Chem. Rev. 115, 11559 (2015).

    Google Scholar 

  3. N. Scarlat, J.F. Dallemand, F. Monforti-Ferrario, V. Nita, Environ. Dev. 15, 3 (2015).

    Google Scholar 

  4. http://www.pardos-marketing.com/hot04.htm.

  5. The Freedonia Group, “Fiber-Reinforced Plastic Composites–Demand and Sales Forecasts, Market Share, Market Size, Market Leaders” (October 2013), http://www.freedoniagroup.com/Fiber-reinforced-Plastic-Composites.html.

  6. Nova-Institut GmbH, “Market Study and Database on Bio-Based Polymers in the World: Capacities, Production and Applications: Status Quo and Trends towards 2020” (July 2013), https://biobs.jrc.ec.europa.eu/sites/default/files/generated/files/stakeholders/NOVA%20-Market-Study-on-Bio-based-Polymers.pdf.

  7. H.P. Meyer, Org. Process Res. Dev. 15, 180 (2011).

    Google Scholar 

  8. A. Corma, S. Iborra, A. Velty, Chem. Rev. 107, 2411 (2007).

    Google Scholar 

  9. R.T. Mathers, J. Polym. Sci. A Polym. Chem. 50, 1 (2012).

    Google Scholar 

  10. G.W. Huber, I. Sara, A. Corma, Chem Rev. 2, 4044 (2006).

    Google Scholar 

  11. K. Yao, C. Tang, Macromolecules 46, 1689 (2013).

    Google Scholar 

  12. R. Travaini, J. Martin-Juarez, A. Lorenzo-Hernando, S. Bolado-Rodriguez, Bioresour. Technol. 199, 2 (2016).

    Google Scholar 

  13. R. Garcia, C. Pizarro, A.G. Lavin, J.L. Bueno, Bioresour. Technol. 103, 249 (2012).

    Google Scholar 

  14. S. Behera, R. Arora, N. Nandhagopal, S. Kumar, Renew. Sustain. Energy Rev. 36, 91 (2014).

    Google Scholar 

  15. M. Narodoslawsky, A. Niederl-Schmidinger, L. Halasz, J. Cleaner Prod. 16, 164 (2008).

    Google Scholar 

  16. C.N. Hamelinck, A.P.C. Faaij, Energy Policy 34, 3268 (2006).

    Google Scholar 

  17. J.E. Thomas, A. Milne, N. Soltys, J. Anal. Appl. Pyrolysis 9, 207 (1986).

    Google Scholar 

  18. M. Patel, X. Zhang, A. Kumar, Renew. Sustain. Energy Rev. 53, 1486 (2016).

    Google Scholar 

  19. T. Kan, V. Strezov, T.J. Evans, Renew. Sustain. Energy Rev. 57, 1126 (2016).

    Google Scholar 

  20. D. Mohan, C.U. Pittman, P.H. Steele, Energy Fuels 20, 848 (2006).

    Google Scholar 

  21. M. Balat, E. Kirtay, H. Balat, Energy Convers. Manage. 50, 3147 (2009).

    Google Scholar 

  22. A.V. Bridgwater, S. Czernik, J. Piskorz, “An Overview of Fast Pyrolysis,” in Progress in Thermochemical Biomass Conversion, A.V. Bridgwater, Ed. (Blackwell Science, London, UK, 2001), p. 977.

    Google Scholar 

  23. P.S. Rezaei, H. Shafaghat, W.M.A.W. Daud, Appl. Catal. A 469, 490 (2014).

    Google Scholar 

  24. J. Lehto, A. Oasmaa, Y. Solantausta, M. Kytö, D. Chiaramonti, Appl. Energy 116, 178 (2014).

    Google Scholar 

  25. A. Krutof, K. Hawboldt, Renew. Sustain. Energy Rev. 59, 406 (2016).

    Google Scholar 

  26. S.Y. No, Renew. Sustainable Energy Rev. 40, 1108 (2014).

    Google Scholar 

  27. S.A. Chattanathan, S. Adhikari, N. Abdoulmoumine, Renew. Sustain. Energy Rev. 16, 2366 (2012).

    Google Scholar 

  28. D. Shen, W. Jin, J. Hu, R. Xiao, K. Luo, Renew. Sustain. Energy Rev. 51, 761 (2015).

    Google Scholar 

  29. M. Staš, D. Kubi č ka, J. Chudoba, M. Pospíšil, Energy Fuels 28, 385 (2014).

    Google Scholar 

  30. S. Xiu, A. Shahbazi, Renew. Sustain. Energy Rev. 16, 4406 (2012).

    Google Scholar 

  31. J.-S. Kim, Bioresour. Technol. 178, 90 (2015).

    Google Scholar 

  32. A. Effendi, H. Gerhauser, A.V. Bridgwater, Renew. Sustain. Energy Rev. 12, 2092 (2008).

    Google Scholar 

  33. S.K. Maity, Renew. Sustain. Energy Rev. 43, 1427 (2015).

    Google Scholar 

  34. N. Wei, B.K. Via, Y. Wang, T. McDonald, M.L. Auad, Ind. Crops Prod. 57, 116 (2014).

    Google Scholar 

  35. Y. Celikbag, T.J. Robinson, B.K. Via, S. Adhikari, M.L. Auad, J. Appl. Polym. Sci. 132 (28), 9 (2015).

    Google Scholar 

  36. B. Sibaja, S. Adhikari, Y. Celikbag, B. Via, M.L. Auad, “Renewable Resources as Precursors of Polymeric Bio-Based Resins,” Proc. Conf. ACS (San Diego, CA, March 13–17, 2016).

  37. M. Barde, B. Sibaja, M.L. Auad, “Pyrolysis Bio-Oil as Precursor of Polymeric Bio-Based Resins,” Proc. Conf. Frontiers in Biorefining: Chemicals and Products from Renewable Carbon (San Simon Island, GA, November 8–11, 2016).

  38. M. Kunaver, E. Jasiukaityte, N. Cuk, J.T. Guthrie, J. Appl. Polym. Sci. 115, 1265 (2010).

    Google Scholar 

  39. Y. Liu, J. Gao, H. Guo, Y. Pan, C. Zhou, Q. Cheng, B.K. Via, BioResources 10, 638 (2015).

    Google Scholar 

  40. A. Mao, S.Q. Shi, P. Steele, For. Prod. J. 61, 240 (2011).

    Google Scholar 

  41. G. Özbay, N. Ayrilmis, Ind. Crops Prod. 66, 68 (2015).

    Google Scholar 

  42. X.W. Zou, T.F. Qin, Y. Wang, L.H. Huang, Y.M. Han, Y. Li, Bioresour. Technol. 114, 654 (2012).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF under Grant No. NSF EPS-115882, by the NSF-CREST under Grant No. HDR-1137681, and USDA-NIFA under Grant No. 2015–67021– 22842.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernal Sibaja Hernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibaja Hernández, B., Barde, M., Via, B. et al. Sustainable products from bio-oils. MRS Bulletin 42, 365–370 (2017). https://doi.org/10.1557/mrs.2017.89

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.89

Navigation